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Equation of state for a partially ionized gas. I
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The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from
a fundamental point of view. A spherical cellular model is deduced for the hot curve(timdeal Fermi gas
Next the Coulomb interactions are added to the spherical cellular model for general ionic Zhd@ilgen an
independent electron model withinZaelectron cell plus several many-body effects are employed. Numerical
examples of the theory for several elemefits Li, N, Na, K, Ni, Rb, Pd, Cs, and Erare reported. These
results reduce in various limits of temperature and density to the expected behavior. They display electron,
localization-delocalization phase transitions of liquid-gas character. In the ligilements, a second possible
critical point has been found. The critical pressure, electron density and temperature for the lower-density
critical points seem to obey power laws as a functiorZ of
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I. INTRODUCTION AND SUMMARY In Sec. lll, | simplify the formulation described in the
preceding section by the introduction of an independent elec-
While the theory of crystalline solids has been very welltron approximation inside the cell. The modification of the
developed, the properties of fluids and amorphous solidsize of the spherical cell for this approximation is discussed.
considered at the level of the quantum mechanics of elecFhe numerical accuracy requirements are also discussed. |
trons and ions have received much less attention. For crysgive expressions for the necessary derivatives with respect to
talline solids Bloch’s theorem is frequently relied upon tothe temperature and the radius of the spherical cell. The
provide the general structure of the necessary quantum medethod for the computation of the self-consistent potential is
chanical wave functions. A study at the level of the quantundescribed.
mechanics of ions and electrons was begun in a previous In Sec. IV, | report the results of the computation for the
paper[1]. In that paper quantum statistical mechanics wasspherical cellular model in the high- and low-density re-
used to develop a theory of a cellular model of a fluid. It wasgimes. The expected temperature independence for high den-
the purpose of that paper to begin to construct a fundamentaities and moderate temperatures is shown. Likewise the
investigation of a partially ionized gas. Of course, there isGibbs free energy: is found to be proportional to the two-
not any firm dividing line between either a partially ionized thirds power of the density in the high-density limit, as ex-
gas and a fully ionized gas, or a nonionized fluid. In thatpected. In this limit, the pressure for the spherical cellular
paper the numerical evaluations of the theory were limited tanodel is seen to be lower than that for the Thomas-Fermi
hydrogen. It is the purpose of the present paper to investigateodel. | have studied the deviations from the low-
elements with more than one electron per atom. My resultéemperature limit in the high-density region. | find that the
have many of the expected physical properties. In the lowdeviations are proportional @~ 23y ~8 instead of just %3
density limit at fixed temperature full ionization is seen. At as expected. Heré is the de Broglie density, E¢2.9), and
medium to high density, there is a density dependent temy? is the ratio of the Coulomb energy to the thermal energy
perature below which the pressure is very insensitive to th&g. (2.9). The smally limit is built into the model and the
temperature. deviations from the ideal gas are proportionayfo For low
There are a number of other approaches to this problerdensities the coefficient of this term tends to zero and a
which are worthy of mention. Perhaps the most generallyterm is predicted by the exact theofgl], but only very
used theories are the semiclassical theories of Thomas amdugh agreement is seen.
Fermi[2—7] and their Thomas-Fermi-Dirac generalization to  In Sec. V, | report the numerical results for intermediate
include the exchange interactip®—10|. Further approaches densities. Here | find critical points and phase boundaries.
are mentioned in Refl]. These features either indicate limits on the validity of the
In Sec. Il, | briefly recall the framework developed in Ref. model or possible plasma phase transitions. Various critical
[1]. | set out the quantum statistical mechanical formalismpoints are reported for a sample of ten elements. The critical-
for fermionic electrons and Maxwell-Boltzmann ions. The point values of the pressure, electron density, and tempera-
Helmholtz free energy is derived and from it the pressure andlure more or less obey power laws as a function of the ionic
the internal energy are derived in the standard manner. OnehargeZ. The plot of all the phase boundaries in ttey
different feature is the appearance of the partial of the energglane seems to showexcept for hydrogena universal
eigenvalues with respect to the temperature in the formul&@oundary for the one-phase regions. There does not appear to
for the energy. This term occurs because the self-consistebe (again except for hydrogerany two-phase regions for
potential depends on the temperature. The true physical irsmall de Broglie density. | plot some examples of the spheri-
teractions of course do not. The equations for the caseé of cal cellular model’s internal energy and its “physically rea-
electrons and an ion of chargeZe are given. sonable” energy, Eq(5.2).
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In Appendix A, | give the results of long computations treatment of the many-body effects induces a temperature
which are required to evaluate the derivatives. dependence in energy eigenvalues in the cellular equations.
Finally, in Appendix B, for the convenience of the reader, The termde; /dT|, is not always small and leads to some
| give a list of the many approximations which are made ininteresting behavior as is discussed in Sec. V. The pressure is

the spherical cellular model as implemented in this paper. also given from the Helmholtz free energy by the thermody-
namic relation

Il. FORMULATION OF THE CELLULAR MODEL JA
Before reviewing the formulation of the cellular model, it P=" o) T
is worthwhile to quote briefly the necessary quantum statis-
tical mechanical formulas that | will need. | will make the Il Jej
Born-Oppenheimer separation and will treat the electrons as Q| Q| o
fermions, but only treat the ions as Maxwell-Boltzmann par- =; extl (€, — u)/KT1+1 “Noa T,

ticles. | will need the pressure and the energy of an atom

enclosed in a cell. | will suppose that the nucleus is fixed in Je:
the center of the cell. The most straightforward thing to com- a_QJ
pute is the grand canonical partition function which is nor- -3 T 2.5
mally given aq12] 7 exd (e—u)/KT]+1" '
It will be useful to rewrite Eq(2.5) in terms of the “radius”
Q(Q’T):/\Z‘o exgNu(Q, T/(KT)]QMQ,T) ry. or typical linear dimension of the cell as
* 076']
rn.——
:NEZO {% exp{[ 1(Q,T)— 1n;/(KT)} gL s Pary|, 26
Sn LN P 3 4 exl(e,—p)/KTI+1° :

The subscripf is a general dummy index and will be re-
=11 W+expl[w(@ D -glikDh, (2. placed later by the more specific\, etc.

. For the case of the ideal Fermi gas, Baker showed in Ref.
for the case of Fermi statistics. By taking the partial deriva{1] that if one divides space up into a simple cubic lattice
tive of In Q with respect to the parameter, | can obtain in  Structure(or any Bravais lattice for that matlewith an av-
the usual manner erage _of one Fermion per unit ceI_I, then the appropriate so-

' lution in the individual cell is identical to the exact solution
1 for the ideal Fermi gas. Briefly, the discussion is as follows.
N=2, , (2.2 Bloch’s theorem on crystal latticd4.3] says that any solu-
T exd(e—w)/kT]+1 tion for the “one-electron wave function” is of the form

where A/ is the average number of occupied states of thé.ﬁ(re):eik‘r‘ﬁ(;)’ where (1) has the periodicity of the lat-

system. Equatiol2.2) fixes u, as a function of the tempera- tic€- By using all thek which lie in the first Brillouin zone,
ture and the volume. For the canonical partition function®n€ €an construct the entire band corresponding to that state.
Q,(Q,T), as usual | havi&TIn Q= —A(Q,T). A(Q,T) is By _the general theory th(_e compmauo_n of_ all the reciprocal
the Helmholtz free energy. | deduce directly from E2.1) lattice yectors plus those in the first Brillouin zone covers the
in the usual way by considering only the term in the sumentirek space. Here the boundary conditions are
corresponding toV, - -

p(H=e " Ry(r+R) 2.7
AQ,T)=Nu(Q,T) and
—KTX In(1+expl[ w(Q,T)— 1/(KT)}). A(r)-V () =—e KRA(F+R)-Vy(r +R),
]
23 9
nr)-Ve(r=—n(r+R)-Vo(r+R), (2.9

The internal energy is given from the Helmholtz free en-

ergy by the thermodynamic relation wheren(r) is the outward normal vector to the surface of the

e cell andR is a lattice vector. These conditions provide for the

JA €; —Tﬁ continuity of the wave function and its derivative at the sur-

U=A-T—| => Q . (2.4 face of the cell. From my point of view, every calculation |
T, T exd(g—wp)/kT]+1 make must be reduced to a single cell and the macroscopic

effects are reflected solely through the boundary conditions,
| remark that normallyge; /dT|o=0 and so is not included and the effective mass and potential modifications.
in the text book presentations. However, in my case, my The standard formulagsl2] for the ideal electron gas are
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(2 f le=7dy 477r§ QO Coulomb energy to the thermal energy, dnds the internal
n(z , =—, energy.

F(n) 1+ze® 3 N The next step in the development of the cellular model is
to approximate the cell shape by a sphere. Since one cannot
fill space with spheres of a uniform size, | choose the size of

ZN h2 |32 the spherical cell to be such that it has the average volume
:E(WI') =fg2), occupied by a single fermion. The ScHioger equation
separates in the usual spherical coordinat®s and¢. The
eigenfunctions are the spherical Bessel functipup, ,r),
pQ  fo(2) Ze? 2 the Legendre polynomial®,(cosé), and the exponentials

NKT 7 )’ y2=m., pQ= §U, (2.9  expime), wherel andm are integers andis the square root
82 b of —1. I impose the boundary conditions of periodicity in all

directions, i.e., at every point of the surface, which ensures
the continuity of the wave function and its derivative for two

where{ is the de Broglie density which measures the impor-such spheres in contact.

tance of quantum effectd is the number of electron§) is Baker[1] has given the following generalization for the

the volume m is the electron mass, arm=expw/kT) in the  case of a cell with a+Ze charged nucleus and electrons.

notation of Eq(2.2). The quantityy measures the ratio of the The Schrdinger equation for this cellular model is

z 52 2 z 2 2 2
Ze?> 3Ze 1 e 3e? [y 1
2 29 &% - = R |
Z[ N g(y)]m(rl,.. rz>+|22 - +2er(z)[Z 3.

2,2

e N
. F(yzz)(bx(rl, N 2]

4 [3z\1B . .
- §Z<ﬂ_—§> f1/2(2(é'))H¢>\(r1. N S A ka

=E\(K)y(r1, ... T2), (2.10

wherem*/m=1 and thef,, term is dropped for the antipar- where
allel spin case. Here* is given by

3ze? , 3z¢ y2
AE) =~ 10, Q(Y)——F

2 2
%=1+A(§)§F(y—),
m

z 4(3z\8 672e2
X[1_§<Tr_§) fl/z(Z(Z))}— 5, F(y%2),
A= E(é) 2/3(5) 1/3( 2f1,2(z(§))—)((§)/(77§)]
Z T f5(2(2)) (2.11) 32e2 3z [y?| 622 i
) AE niy = — g(y )_Z_er<f) T F(y%2).
(2.13

This result is arrived at by starting with the Heitler-
London equation which is valid in the cold, dilute limit and
by adding corrections, proportional ®andg. In the cold ~ Equation(2.10 simplifies to
dilute limit, F=g=0. WhenF=g=1, the equation is cor-
rect for the hot, ideal-gas limit through ordgf. The func-

Z 2 e2
tions F and g vary monotonically between 1 and 0 &s —2ik. V V2 _Z_ r r
varies between 0 aneb. Baker in Sec. V of Ref[1] has ,21 ! ! Pl r2)
He also derived the effective mass terms of €q11) as part EZ: _ e_ Y_ EZ: 2

of the exchange correction. The derivationX(f{) is to be 217 | 2r, \Z) <

found in Ref.[14].

given a semiclassical derivation of these many-body terms.
il
| separate out the state independent terms X X(rﬁl, - ,rz):gI }\(|2) ¢,A(F1' o 'FZ), (2.14

En=EintAEjor anty » (2.12  wherem*/m=1 for the antiparallel case.
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sion is given by

.1 * 3ze? 2e2 X ze&®  eu(ry,T,riry)
en(=3| 1+ ]8R+ 15-90)+ 5 —F(y*2) e (32
m* Z zé 1 Thus for the correspondineg,
5|1 (B2l 2 Y73
j=1 N 1
& an(=5| 1+ || & \(K)= 5 (i \(1)]
y : 2 ' 2270
2 ——|¢, >\>+ (f)
e ze® e%u(ry,T,riry) .
X|—=————/lo\(r))
3 37 1/3 r r
X + —
22 E <<m| |¢| V- Z(Wg) 1 et Tl
o LR (NG A PG
X f1(2(0)) |- (2.15 y 2
4mr (f)<¢l x(r)| |¢’| )\(r)>+A6Horant|ﬂ
For the antiparallel casen*/m=1 and thef,, term is
dropped. (3.3
I1l. INDEPENDENT ELECTRON MODEL OF THE Z where the state independent part is
ELECTRON CELL ez
Aey= gyt + S FO2)
Since theZ electron model is currently intractable, | con- [ g y y
sider the simplification of using “independent electrons.” , 5 s
The first step, as was done by Hartree, is to use the form of e (L)P_(%) f (z(g))}
the wave function,¢,(ry, ... r2)=I%,¢i(r). In Eq. rp \Z/|4 \=g) ’
(2.14 all the terms except the electron-electron interaction
can be neatly divided so as to depend on the single-vector A 3¢’ )+ 32e2F 27) 4 3_eZF y_2
variabler; alone. By the method of the separation of vari- ea“““_lorbg y 5ry, (v 4r, \ Z)°
ables, the equation for each single electron can be obtained (3.9

by integration over the other electrons of the electron-

electron interaction terms. Of course, as is well known, thisAgain, for the antiparallel cas@*/m=1 and | drop thef
leads to a complex self-consistency problem. Instead, | wilterm. The modifications to take account of the exchange and
also impose the condition of a single, temperature and dermany-body effects are included.

sity dependent, self-consistent charge density. With these At this point, a technical complication arises. That is the

conditions | propose, instead of E@®.14), the equation,

7 . ev(ry,T,rir
[ _2ik.v_v2]_v(+b)

e? (y S _F R ;
o 5 DN =E \(K) @y \(T).

Mo
(3.D

The potentiale?v(ry,,T,r/rp)/r is composed of two parts.

The first is the electron-ion interaction which is j@&/r as

treatment of the termil = — (i#2/m)k- V in the spherical co-
ordinate basis. This term is not diagonal in that basis. Baker
[1] has noticed that there is near degeneracy of the states
characterized byw=\-+[(I+1)/2], where[x] means the
largest integer less than or equalxoAt this point, for rea-
sons of numerical expediency, he replaces the matrix ele-
ments by plus or minus the root mean square value over the
nearly degenerate block. This result depends on the quantity

2

h
Tl,A:—ﬁU,m,)\IV;ZH,m,)\). (3.5

seen in Eq(2.14). The second part is a representation of the
electron-electron interaction. Since | want to have the fuIIBy performing the sum of the matrix elementsiot overm

ion potential at the origin | seleat(r,,T,0)=Z. Since an

electron does not screen itself, | want to see the potential o
only a single ionic charge at the cellular surface, so | select
v(r,,T,1)=1. It is important to note however that, when |

add up all the energies, | will have countg{Z—1) terms,
when, as we saw in E¢2.14), | should have only;Z(Z
—1) such terms. In the computation of this | must there-

fore subtract the extra terms off. The electron-electron repul- =0

e% nd then over the nearly degenerate block, BakEpbtains

ﬁzkg ) 2 4 ﬁzkz
Bo(k) (L+l)
21+1
2 ( Tio-ta+1), (3.6

056112-4



EQUATION OF STATE FOR A PARTIALLY ... .1l PHYSICAL REVIEW E68, 056112 (2003

which gives the appropriate root mean square coefficient afubject to the boundary conditions

the linear term irk. This approximation is accurate to within . = =

—2.5%—+4.9%. A is something like a bandwidth. N Véeredn) =0, doad)=0, 3.9
Before proceeding, it is worthwhile to describe the change

in the spherical cell model to includg electrons in one wheren is the unit normal vector to the sphere. The relevant

sphere. In the staljdard apprpach each electron is in i3ts owp are those in the first Brillouin zoné§|$RB where RB

sphere with a radius which is smaller by a factor Zf°. —(9m/2)Y37,. | also definekg=(9m/2)"¥r,, wherer,

Thus, 35~
= Zrb .
3A 1/3 1/3 2 > .
Ab:( ) —7.344 995¢ 10—9(_) cm, In the case wherk=0, the radial partAof fhe wave func-
AmNoZp Zp tions are the spherical Bessel functigng, ,r) where

(3.7 o
JiI(piArp)=0, | odd,

where A is the gram atomic weight and/; is Avogadro’s

number. The equation for the noninteracting case is Ji(Pi\rp)=0, | even (3.10

2

h—[RZ—ZiI?V”—V?]@ A(f):a A(Alz)¢| A(F) 38 ae the boundary conditions. The normalization condition
2m roorh : AN

which determineg is

. 20 1 f dk
ZN (2m)3 ) ke u
+ —
P 2mkT kT
—if dk/k
2ar 6’7722N 213 ﬁ2 RZ w
1+e -
X ( Q ) 2mkTR2 KT
fee] e<] 1 . 1
~3> (21+1) > | dxx? T,
1=0 n=0Jo 1+exd (L5Vm) %X e ot & + kAnsp1+1)2) — #/KT]

1
+ P : (3.11)
1+9XF[(1-5\/;§)2/3(3|,n+ K?— KAn+[(|+1)/2])_,U~/kT]]

where | use the notatiog ,= E)ﬁnlké and where 3=2x3X 3 and the 2 is for the two electron states, the 3 normalizes the

integral, and thé compensates for the twn A terms.{ is as defined in Eq2.9), andx=k/kg . In this section and beyond,
N denotes the number of ions, addN the number of electrons.
For the pressure, remembering tipd is just of the energy | get

Q ” ” .
P 2(1.5(7m )2 (21+1) >, JldKKZ{
=0 n=0 JO

&t K2+ KA o4 1y21(Ke)
1+exp (1.5Vmd) % ey n+ K%+ kB 1+ 1)) — w/KT]

ZNKT

(3.12

€nt k2= KAy 1)2)(Ka)
+ 23 ~2_ A :
1+exd (1.5Vm0) % (e n+ k%= kB pi 1+ 1)2) — w/KT]

Let us expand the volume to encompasglectrons in-  The electron-ion interaction is given by E®.1 in a sphere
stead of 1. Then Eq3.9) becomes of radiusry,. For the independent electron case | need to

transform this equation to the smaller sized spHefesr,,
appropriate to the single independent electron. The change of

N-Vheed ZY%5) =0, $ogdZ¥¥p)=0. (313  variables is' =r/zY3 andk=2Z"%, which gives
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e?Z Y3y (ry, T,rirp)

r

ﬁZ
22’3[—2 —[k?—2ik-V-V?]—
m

- e22—1/3( r )2F<y2) _
2, a 7 A1)

=& \(K) ¢y \(1). (3.14

The overall factor 0fZ%2 on the left hand side converts

PHYSICAL REVIEW B8, 056112 (2003

For the sake of clarity, | summarize. E®.1) becomes
e?Z Y (ry,T,riry)
r

eZZflIS r 2 y2 .
- =] Fl 5| {ia(

2ry, Iy

h? -
[Zm*[kz—Zik-V—Vz]—

=& (K) B, (3.19

the divisor ine, , from k3 to k3 . This result is in accord with  with the boundary conditions given by E3.9). In the

the well known result that, for the ideal Fermi gas,is a
function of { alone.

spherical cell approximation the normalization condition
which determineg is

o0 o] 1 L 1
1=3>, (21+1)>, | dk«?
=) n-o0 Jo o 1 me .
1+ex (15\/;4’) e|’n+5 1+F (K +KAn+[(|+1)/2]) _,LL/kT
1
+ 1 — , (3.16
1+exp[(1.5\/;§)2’3 et 5| 1+ — (12— 1B 11 1) | — /KT
where now the dimensionless form of the eigenvalue is
2me; n(0)
e = (3.19
h2K3

For the corresponding,

.1 * .1 . [Z2%3%% €Pu(ry,T,rir,)Z2 13 R
en()=5| 1+ —— &K= S(a]| ——~ ; )|¢|,>\(f)>}
1( m*) L v(ry,T,rirp)e?z 13 R *e?z 13 (yz) .r? .
— 5| 1= (i)l : [ () + “mr, T\ Z <¢I,}\(r)|%|¢l,)\(r)>+Aé'

where the state independent part is

2

3e 3Z
_>—13 2
AEH Z {1&bg(y )+ 5r

& (y2\[3 (37|18
+EF(?){Z—(W—§) f1/2(2(§))Hv

3e? 3z¢€? 3e? [y?
o _ -1 2 2
Aeaniy=2 [10'bg(y )+ 5r, F(yZ)+ 4er( Z)]
(3.19

e2
F(y?Z)
b

Again, for the antiparallel cas®*/m=1 and | drop thef ),
term.

(3.18

It is not trivial to organize the spherical cellular model
equations so that they can be implemented with currently
available computers. Indeed, there are rather serious compu-
tational challenges in the production of numerical results for
this model. Not surprisingly, the problems become more sig-
nificant as the value of increases. Unless the work is prop-
erly organized, there is the issue of having to store more data
in high speed memory than is available in even very large
modern computers. If one stores the data on the hard drives,
then the computation slows down by an impractically large
amount. The equations of Appendix(gether with those in
the body of the papgimplicitly lay out how | have solved
the computational organization in order to get the results
reported. This method does solve the storage problem, but
even so, hundreds of hours of work station time were re-
quired.
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When | evaluate these equations numerically, there is the & 3
issue of the number of values bfrequired. | impose two x0=(1—28) meT =1.567 77% A)
conditions. First that the minimum of the potential for the 97?2 72 pl
largest value ofl lies on the surface, or outside the cell.
Second that the potential value at the surface for that value of 2r,me
| be at least 16T which gives a factor of about 16 for =1.770682 7%, (3.2)
those states. These conditions imply that h?

with p in g/lcn?. On account of the factor &f?3, and the
1 known dependence of the eigenfunctions, | take the mesh
L= 5[\/1+7-08273Xo(22/3+ 152/y%)—1]+10, spacing to be the maximum of Z8%, and 2y\T. The
(3.20 number of mesh spaces in theintegration remains un-
changed at 16(1.67¢)Y3, as theZ dependence is incorpo-
rated in the definition of.
where the 10 is just added for safety’s sake. By Egs.(2.4) and(2.6) in order to compute the pressure
A sufficient number of mesh spaces for the radial coordi-and the internal energy, | need in addition to #ig, their
nate was determined by BaKdr] for the cas&Z =1 to be the  derivatives with respect to, and T. First following Appen-
maximum of 1&, and 2T whereT is in eV, and dix A of Baker[1], | need

e%ryw’(ry,T.p)

9E ( Jdlnm*

6+Z‘1’3r§f d5¢*(rb,ﬁ>[—

|" —_—
b&rb dlnry r
alnm*) eu(ry,T,riry) €2 (r 2 [y? e? y2 y2
—| 1+ +—|— — ||+ —p?=F’ r 3.2
alnry r 2rp\rp z 2rbp z AU p) 322

wherep=r/ry. Using this result, | can write

ﬁ2k2 ﬁ2k2
&, x(o)+ _+_A| A(K)
2m*  2m*

(2

J R 1
ry— Ky=——
b(?r fl,)\() 2

b
dlnm*

- 1+
dinry

m*

1+—|| [ 2+
m

Jdlnm*
alnry

[ e2r2 y2
A UG pon 3yzF’(—

I'p
1 om*
|, A( 2m alnry

e®v(ry,T,riry)  €r?
+

r 2r§
. K% h%KE 1 _ (2% QPu(ry,T,riry)z 43 R
X| E(0)+ ——x——A (k)= =(¢ \(1)] - [ n(r))
2m*  2m* 2
d 1 .. m* . €rry’(ry,T.p) R ve @ R
r,—Ae— =2 Y3 1+ — r)—mo—oo—— NY+2z2 Y, — r
bor €3 - (i \(1)] . |1 a(r)) bﬁrb<¢l'}‘( )l

ez( m*)v(rb,T,r/rb) m* e?r? (yz) e? ( m*) R
8 _2_rb m riry i amrd [1a(0)+ s, 1+F (i a(r)]
z u(rb,T,r/rb)) R e? ( m*) ( z v(rb,T,r/rb)) R
X m__r/rb | A r)>_4Zl/3rb 1+ rb—(¢| N I’)| e T |¢|’)\(r)>
(3.23

for the case of parallel spins. For the case of antiparallel spins, | write
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J % K* hkg e’r? 2\ eu(ry,T,riry)
o, (0= 72 * A UGBS MF'(%)——” Al
e’ryo’(ry,T,p) -
_2_ (yf) | (N)Y=Z Yy \(r )|—bv rb P NG)
- y e? z (rp,T,rlry) .
+Z 3|-/3['b(9r <¢I )\( | (?)|¢| )\(I")> 21/3 <¢I )‘(r)|(r/|‘ vb|’/—rbb)|¢|,>\(r)>
J e Z  u(ry,T,riry)
Frogy, Aeanid = o o5 <¢| MO = 1), (3.24)
where
e? 3 2 2
o Ae= 12 1’3[109<y2>+ Vg () 2R () +yPZF (2] yf yfF(y?”
3Z 1/3 y2 y2 , y2
_(w_g) {fm(Z(z))fF’ a +3§f1,2(z(g))F(f)H.
13 2 oS 2 2 2 y y2 (Y2
rbgr Aeam'“ __Z 10g(y ) 10y g (y )+§Z[F(y Z)+y ZF Z)]—i— (2 +?F f . (3. 25)

Again, for the antiparallel cas@*/m=1 and | have dropped thig, terms. In the above equatiorfs;,f;,, andg’ are the

derivatives with respect to the argumentsis the derivative with respect tg,. In the following equations; is the derivative
with respect tor.

The details of the calculation of the above quantities and also those for the temperature derivatives are treated in Appendix
A.

Next | need the derivative of E¢3.18 with respect tal. The first ingredient that | need is

aE T om* %v(ry,T,riry)  e%r? [y? .
T —=——— 5+Z’1’3fd * +—5Fl>
JgT  m* aT{ (o) r 2ry | Z 0
2y 2 2 2T
.. ye\ y r e To(ry,T,rlry) R
+z*1/3fd ()| e’ | = —| -2 ). 3.2
r¢*(r)|e Z)2rz\r . @(r) (3.26
Hence | have
d : m* 15 ‘ 1 .. m* . €%u(ry, Triry)  €%r? [y?
T— == +-72" "1+ — + Fl =
(ﬂ.fl,)\( ) JnT |2 (k) > m <¢|,>\(r)| r ng 7
m* [ Z2%e?  e®u(ry,,T,riry) m* e’rz  [y?\y?
n _ 13 r— i 2
4m( p ; )|¢| x(r)> Z 1 N bF (Z) Z

2

1 * ,T,r/
——Tv(rb T.r/rp)| i a( (N)+2Z~ 18T _<¢' A(r)|[ (1_m_)w

m

m* e2r2F y2 ) e? . m*)_l_ ] - Z  u(rp,Triry) ST J A
Lmeetrt (Y B L L L +T—
am 3z |1\ (1)) e - &T<¢I')‘(r)|r/rb i |1 a(r)) o7 Aen

(3.27
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and for the antiparallel case,

9 2 2 y2\y
Tzen(k)=2" 1’3<<m| (7)7

e2 . -
- TTv(rb,T,F/rb)|¢|,>\(r)>

*

i UG (yg)wn (1)

2
2713y,

v(r,D T,riry)
riry

J . Z
Tﬁ((ﬁm(fﬂw

|¢I )\(I‘)>+T Aeantlﬂa

(3.28

9 325/382
37 (v2)v2_
9" Y)Y g Y

, 20 \2[3 (37|18
_e_z—1/3|:’(y_)y—{——(w—§) f1/2(£)}

e 2 37 1/3
R N

My

F'(y?2)

3(32
Talm

13
> ) §fi/2(§)}.

5/36‘2

9" (Y)y*— —5 Y

Mp
3e2 y2 y2
13| 7 |7
a2 F (z) > (3.29

3
Aéantl-ll __Z 3 ZFI(yZZ)

Next | consider the problem of the self-consistent poten-

tial. To this end, | use Poisson’s equation
V2V(r)=€%g (3.30

The potentiaV is obtained from the charge densigyby the
solution of this equation. To be consistent with Eg.1), |

take the convention that the electron charge density is posi-
tive instead of the usual convention that it is negative. The

solution for a heterogeneous sphere of radisith spheri-
cal symmetry i 15]

1(r r
V(r)= —eZFfo Q(a)azda—ezfr bg(a)ada
(3.32

which is

PHYSICAL REVIEW E68, 056112 (2003

V(r)le?= f Q(a)azda-l-Jr o(a)a?da

b
—rf o(a)ada. (3.32

Now, the first term on the right hand side is justZ. To
complete the computation of the potential, | need to Add
take account of the central ionic charge. Thus,

FV(r)/e?= f“’( 1- é) o(a)a’da. (333

Done properly, to obtain the self-consistent potential
—e?v(r,,T,r/ry)/r, the electron density which corresponds
to the state being computed in the solution of E§.1)
should be subtracted from the total charge density. However
I will instead simplify the process by subtracting thez 1/
fraction of the density. There will of course then be an un-
compensated unit ionic charge contribution to the potential.

Thus | obtain
2l g
—_— r —_—
z P (rirp) Bry

D(ry,T,8)dB.

v(ry,T,rlry)=1+

(3.39

For the case of a uniform densiiy(rb,T,r/rb)=3Zr2/r§,

and v(ry,T,r/rp)=Z+3(Z—1)[(r/r,)®—3(r/ry)]. | use

this value as an initial guess to start the self-consistent itera-
tion process. The potential of E(B.34 corresponds to the
complete ionic charge at the origin, and just the hydrogen
potential at the surface @and outsidgthe sphere. Whe#&

=1, this potential reduces correctly to that for hydrogen.
The cellular model charge density is

(21+1) B\ (1) by (r)r?
ex (e — w)/KT]+1 -

D(rb,T,r/rb):%} (3.39

To complete the calculations, | will also need the weighted
charge density

m*(N)(21+1) @, (1) ¢y \(1r)r?
m{exd (e \—w)/KT]+1}
(3.39

D* (1, T,trp)=>,
I

where in statea with antiparallel spinsm* (\) is taken to
bem.

| have programmed these equations for a computer to pro-
duce the pressure, the internal energy, and the “physically
reasonable” energys.2) as functions of the temperature and
the density. | report the results of computations made for this
model in the following two sections.

056112-9
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IV. LIMITING CASES T T T T T T T

The equation of state tends to that of the ideal Fermi gas
(plus the Maxwell-Boltzmann behavior of the ionm a
number of special limiting cases. The most obvious case is
wheny—0. Here the structure of the many-body terms, as __1%°
discussed in the preceding section, is such that the ideal-ga3;
limit and the leading order termgO(y?)] are correctly s
given. Note that the spherical approximation for the cells .8
causes a few per cent fluctuation about the correct ideal-ga g
value. For the pure ideal-gas case, this fluctuation is not& '° [ T
more than 5%. }

The next limiting case of interest is the behavior of a very
dense system. It is well known that in this limit the kinetic
energy per electrofisee Eq.(2.9)] is proportional top?3,
while potential energy is only proportional {©3. Thus |
expect the kinetic energy to dominate and the system to tenc
to ideal-gas behavior in this limit. The system will be ap- 03 _
proximately independent of temperature for the temperature L L L ' L L L

. 100 300 1000 3000 10000 30000 100000
below the Fermi temperature. p(g/cm?)

When the temperature is small compareditodefined by
Eq (22)’ and the system is dense, the level density at the FIG. 1. The chemical potential of the spherical cellular model
Fermi surface is approximately that of an ideal gas. Thus ]‘or lithium (Z=3) vs _the density. These results are fqr the 1-eV
may follow the standard derivatiofsee, for example, Ref. isotherm. The dotted line shows the asymptote proportlonp?’ﬁ)

[12]) to find the temperature variation to leading order. The

3000 [ -1

300 -

u~0.256p%/3"

emica

3.0 - Lithium isotherm |
T=1eV

ch

10 -1

result is from the zero-temperature limit &=d(Z)/Ty'2 The sym-
bol =< means asymptotic. Put otherwise the deviation is
572/ T)\2 A=d(Z)/y8¢%3. | have estimated thatl(3)~2.1x 10,
p=p(T=00) 1+ g(— +} d(19)~3.4x 10’, d(55)~5.7x 10°.
K In the low-density limit, Baker and Johns¢t4] found
from the perturbation expansion that
5772(T 2
U=U(T=0,Q)[1+——|—| +--- (4.9)
12 \

pelectror(Q:T) - i (Z+ 1)3/2 3

: =1- y*+-. (43
One expects, as the ideal-gas behavior only depends on Pideal 2. T) 32z

that > p?2 in the high-density limit. This behavior is illus-

trated for lithium in Fig. 1. Figure 2 shows the behavior of 10 T T T T T

the cellular model pressure with Coulomb interactions. The

dominant physical behavior of temperature independence fo

high density and modest temperature is well illustrated in

Fig. 2. Here the electron pressure divided by the ideal-gas 08 Lithium, isotherms |

pressure shows rather good data collapse for the case ¢ in the one phase region

lithium. It is of interest to compare the high-density behavior — { /& === T=100ev

(in the one-phase regiprwith that of the Thomas-Fermi 3 | —  # 77 T T=30ev

model evaluated at zero temperat[td]. | show such results & o

for cesium aff=1 eV in Fig. 3. The spherical cellular model g o8 . T; 13:v =

pressure decreases relative to the Thomas-Fermi pressure n g — To5ev

ticeably in this region as the density decreases. We also seq’

in this figure that the Thomas-Fermi pressure is less than the

ideal-gas pressure. | have investigated numerically the depai o |

ture from the limiting curve seen in Fig. 2, and | find that it )

is rather different from that predicted by Ed.1). | illustrate

these results in Fig. 4 for the case of potassium. | have de

termined numerically that in the limit of high densities, the

dEVIatlon 0.0001 0.0010 O.OI‘IOO 0.1:)00 1.0:)00
p(g/cm?) x10®

A=1— Pelectrof 2+ T) Pigeal P, T=0) 4.2 FIG. 2. The ratio of the electron pressure to the ideal-gas pres-
Pideal £ T) Pelectrod £ T=0) ' sure for several lithiumZ=3) isotherms at high density.
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100 — 1.1 T T T
— 10 b a B LR R PR ]
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g 09 |- \\\ /‘/\ ~ —
g AN N,
— S N
[S E Tl
Q. 2 08 \ . -
& i = o N\ .
6 050 // Cesium, T=1eV a \: N .
© / o B A '\' N
2 4 % o7 L Potassium, isotherms AN i
Q‘ i . . ‘\
< /’ a in the one phase region .
c ~
S T=30,000eV—-———- -
= - - 086 » -
£ 0.25
° T=10,000eV————-
o
o5 | T=3,000eV --------- _
curve=1- 1.:‘:5894y3 --------
0.00 L1 i 1 1 | 1 1 I 1
0.0003 0.0010 0.0030 0.0100 0.0300_0.1000 0.3000 1.0000 3.0000 0.4 1 1 1
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FIG. 3. The dashed line is the ratio of the electron pressure to
the ideal Fermi gas pressure and the solid line is the ratio of th
electron gas pressure to tHe=0 Thomas-Fermi theory pressure.
The electron gas pressure is that computed from the spherical ¢
lular model of cesiumZ=55) atT=1 eV.

FIG. 5. The ratio of the electron pressure to the ideal-gas pres-
Sure for several potassiunZ € 19) isotherms at low density. The
e(ilot-dashed curve is the result of £g.3).

cal cellular model results begin to deviate from the ideal gas.
| have illustrated a typical cagpotassiumin Fig. 5.

When one remembers thag., is the idealunchargegelec-
tron gas pressure, then it is easy to see tha{£8) displays
just the classical Debye-Hikel correction terni16]. | do not , i i )
see this simple behavior for the low-density limit. The reason " the preceding section | was concerned with the high-

is either that the higher-order termsyirare very important or  @nd low-density limits. In this section I will look at the in-
that the approximations involved in this model do not ad-termediate cases. Since the region of principal interest is the

equately reproduce this limiting behavior. Equatiéh3) one-phase region, it is important to investigate any possible

does however, generally speaking, indicate where the Sphe,x(;_ritical points and their pendant phase boundaries. The criti-
cal points described in this section are basically in the

plasma regime and are not relevant to the ordinary, familiar,

V. NUMERICAL RESULTS

0.00300 |- ~ Lo . gas-liquid transitions. They probably represent localization-
SN delocalization transitions as the electrons from various shells
\\\\‘\\ are ionized. As an example, the gas-liquid critical tempera-
] SN ture of sodium was found experimentall§7] to be about
000100 |- '?°t,$]ssr'r‘:2 \E\\\'&_'\ 7 0.222 eV which is about 1000 times smaller than what is
sothe \\‘\ found here. The previous results] for hydrogen have com-
\\\‘l'-;\ pared well with a number of other calculations as reported in
\\\\ Ref.[18]. The author is unaware of theoretical estimates of
< 000030 - ti:g ez N - the critical-point parameters for “plasma phase transitions”
T 1w \‘.g‘\ for elements with higheZ.
....... T2 230ev ‘-\'_\\\' | have computed, using the criteria
AAAAAAAAAA A=3.0x10 10/(Ty 12) \\\
0.00010 |- K\ T r7p (92p
Y - =7 =0, (5.1
W\ AORPTY)
\\‘ T
\\ approximate values for the critical points which are implied.
0:00003 - ; . . N In order to locate these critical points, | have computed a
8 1 ‘;T 112 20 number of isotherms and plotted the pressure against the

volume. An illustration is shown in Fig. 6 for nitrogen. |

have used the Maxwell equal area construction to locate ap-
proximately the phase boundaries. To locate the critical point
| interpolate between nearby isotherms. The interpolating
function is linear in the temperature and a cubic in the vol-

FIG. 4. The deviationA=1—[PelectrofP:T) Pideal 1 €V)I/
[Pelectrod s 1 €V)Pigeal P, T)] from the zero-temperature limfEq.
(4.2)] approximated here by the 1-eV cujvef the pressure for
several potassiumZ(=19) isotherms at high density.
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FIG. 6. Some isotherms for nitroge@ £ 7). The breaks in the FIG. 7. An isotherm for erbiumZ=68). This case illustrates
curves occur when the computed pressure is negative. This featutBe possibility of having two two-phase regions. The 1300 eV
is interpreted as the low part of a “van der Waals loop” which is to isotherm is illustrated by the dashed curve. The Maxwell construc-
be replaced by a flat line determined by the Maxwell constructiontion which maintains monotonicity of the pressure as a function of
the volume for a fixed temperature is shown by the solid horizontal
nes. The reason that the equal area feature of the Maxwell con-
truction is not visually apparent is that the volume is plotted on a
log scale so that the low volume two-phase region would be clearly
seen. The discontinuities in slope result from the joining of the
computed values by straight lines.

ume. The reason for the use of a cubic is that on the critical
isothermp— p.=(Q — Q)2 in the neighborhood of the criti-
cal pointT.,Q..

It happens for the elements with higher valuesZathat
(at least two separate critical points can occur. | illustrate
this case for erbium in Fig. 7. Since the imputed two-phase
regions encompass the highly complex phase diagrams of
solid state physics, | interpret these obtained critical proper-
ties as a possible indication of the general location of the
limits of applicability of this model. However, if there are in
fact plasma phase-transitions, then the actual region of valid

1600

ity may not be limited by these computed critical phenom-
ena. | report results fa=1, 3, 7, 11, 19, 28, 37, 46, 55, and 1200
68. That is, for hydrogen, lithium, nitrogen, sodium, potas-
sium, nickel, rubidium, palladium, cesium, and erbium.

It is of some interest to see a typical, radial, electron den-
sity. In Fig. 8 | have plotted the results of the spherical cel- “L
lular model for erbium over a range of densities. It will be >
observed that at the lowest density on the surface of the
sphere the density does not vanish. This feature is due to th
boundary conditions which, for even parity states, impose
the condition that the radial derivative vanishes and not the 400
wave function. It is well known[21] that this condition,
which is similar to the so called “metallic bond,” may lead
to a lower energy state than that for an isolated atom. As the
density increases, the change in the radial, electron densit

800

[+]

Erbium, radial electron density
T=4000eV 4

e _p=201x10%g/cm3
_____ p=2.01x10%g/cm?3
p=477x10%g/cm3

= — — -

profile reflects, as one would expect, the pressure ionizatior 0000

of the atoms.
In Figs. 9—11, | plot the critical values of the electron

0.325 0.650
r (inunits of a, /2)

0.975

FIG. 8. The radial, electron density time$ computed for the

pressure, electron density, and the temperature. The powggherical model for erbiunz=68, at a temperature of 4000 eV.
laws plotted in these, and in subsequent figures, are onlor high compression, the weighted sumyf is nearly constant,
intended to indicate general trends as there are manifestlyhereas for lower densities, a concentration is sagfis the Bohr

significant deviations from them. A second critical point hasradius.
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FIG. 9. The values of the critical-point electron presspyers FIG. 11. The values of the critical-point temperatiigvs the
the ion charge for a few selected elements. The dotted line showsjon chargez for a few selected elements. The dotted line shows the
the power law. The values for the two distinct critical points found power law. The values for the two distinct critical points found for
for each element are connected by dashed lines. each element are connected by dashed lines.

been found for nickel and for all the elements studied with .
larger values ofZ. | speculate that the occurrence of more structure of the atoms. | emphasize that these effects are not
TN . ut in artificially but follow from the solution of Eq(3.15.
than one critical point is related, crudely speaking, to th : " ; .
successive ionizalt?on of the various elect>;on[)shellsg.J n Fig. 13 I plot th_e cr|t!qal valqes of the de Broglie density
In Fig. 12, | plot the critical values of, , the ratio of the {.. The low-density critical-point values trend upward and
. ] c

Coulomb energy to the thermal energy. This plot shows an

interesting structure. The structure shown here can be inter * T T T T T T
preted to lend further support to the idea that the cellular
model does reflect to some limited extent the known shell

x10¢ | ! T T o . 3 .

P 3d ° °
L T Ut <
104 - [ -1 o

~~ c|> | ‘ ]
nE w103 | Critical Points oy _
{ high density valueso : & -
3 103 = [ow density values e & T -~ 2 -
o R
X 102 |- o _
PN o 2s
o 2 |- -
g " e
S x| 4 1 Critical Points i
2 -~ high density values o
s o ] low density values o
c
< T e T
~ -
0.0 1 — 0 1 | 1 I | t
N ~0.1372 26 [} 10 20 30 40 50 60 70

st o Zp /A~ - z

ot b I i ! FIG. 12. The critical point values of, vs the ion charg& for a

! 3 7 n 100 few selected elements. It is to be noted that, for the low-density

critical points, the value shifts from the hydrogen valus électron

FIG. 10. The values of the critical-point electron dengip; /A shel) to a different value when thes2electron shell begins to fill.

vs the ion chargeZ for a few selected elements! is the gram At about the value oZ where the 8 electron shell begins to fill,
atomic weight. The dotted line shows the power law. The values fothe high-density critical points appear. The valueygfremains

the two distinct critical points found for each element are connectedelatively constant for both the high-density and the low-density
by dashed lines. critical points.
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FIG. 13. The values of the critical-point de Broglie dengitws FIG. 14. The phase boundary of the spherical cellular model of
the ion charge for a few selected elements. The dotted lines con-nickel (Z=28) in theT-p plane. The solid dots are the two critical
nect values for the high- and low-density results. Asincreases,  points and the open circles are the data points on the phase bound-
the guantum effects become increasingly important. ary. The discontinuities in slope result from the joining of the com-

puted values by straight lines, except of course, at the triple point,

reflect the increasing importance of quantum mechanics. Th&2rked byA, where the two two-phase regions join.

values for the high-density critical point are roughly constant
and much larger than those for the low-density critical point.states and is not completely constant. The rZji.A is the
As a final remark, the lack of really smooth behavior is notelectron density. In the cases where there are two critical
surprising and presumably reflects to some degree the elepeoints listed for an element, the values are listed in the same
tronic shell structure of the atoms. order for each of the various quantities.

| list in Table I the critical-point values which | have | have computed the phase boundaries pendant to the
determined for the spherical cellular model. The temperatureritical points. A typical example is that for nickel as shown
is in eV, the density is in g/chand the pressure is in Mbars. in Fig. 14. It is undoubtedly true that the behavior at the
The ratiop:Q./ZNKT, relates to the law of corresponding critical point is rounded and quadratic in form, however |

TABLE |. Critical-point values.T, is in units of eV,p. in g/cn?, A is the gram atomic weighp. in Mbars, andZp./A in units of
0.6022< 10%/cn.

z 1,H 3, Li 7,N 11, Na 19, K 28, Ni 37,Rb 46, Pd 55, Cs 68, Er
Te 1.83 31.0 124 260 632 13100 1.74x10° 2.46x10° 2.93x10° 3.84x10°
328 513 859 1.0810° 1.64x10°
pe 0.0986 5.27 43.1 143 631 1.580° 3.65x10° 6.74x10° 1.06x10° 1.96x10*
7.98<10° 1.44x10* 3.39x10* 6.98<10* 9.40x10°
A 1.00797 6.94 14.007 22.977 39.0963 56.71 85.4678 106.4 132.91 167.26
Pelle 0.491 0.471 0.536 0.639 0.758 0.893 0.998 1.05 1.24 1.39
ZNKT,
0.552 0.346 0.832 1.30 0.696
Pe 8.96x10°2 321 1.3%10° 1.10x10* 1.42x10° 7.69x10° 2.65x10° 7.28x10° 1.53x10° 4.11x10
6.88<10° 1.07x10° 1.01x10" 3.82x10° 4.22x10°
Ye 2.22 1.32 1.27 1.24 1.22 1.21 1.21 1.21 1.26 1.30
2.95 2.80 2.68 2.87 2.59
Le 3.93 1.31 1.55 1.63 1.93 2.01 2.17 2.39 2.75 3.34
66.2 53.6 58.1 84.3 57.2
Zp. A  9.78<10°2  2.28 21.6 68.6 307 780 1.5710° 2.91x10° 4.36x10° 7.97x10°
3.94x10° 6.23x10° 1.47x10* 2.89x10* 3.82x10¢
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FIG. 15. The phase boundary of the spherical cellular model of F|G. 16. The phase boundaries of the spherical cellular model
nickel (Z=28) in theZ-y plane. The solid dots are the two critical for ten different elements. The critical points are solid circles and
points, the open circles are the data points on the phase boundagye data points are open circles. The triple points are upside down
and theV is a triple point. triangles. Since these triangles are a bit hard to locate, | have placed

small arrows pointing towards them. The points corresponding to
have connected the data points with straight lines. In thigach element are joined by dotted lines. The dashed line has two
case there are two critical points plainly visible. The pointParts: the first for smaller values gfis justy=1 and the second
where the two two-phase regions meet is the triple point aBart iSy~0.963€™" which appears to be a limit for the phase
there are three different phases in equilibrium with eactPoundaries.
other at this special point. It turns out that it is somewhat
more interesting to plot the phase boundaries in yhé&
plane. | do this in Fig. 15. It is worth noticing that the phase
boundary curve turns up for small valuesfThis effect is
more and more pronounced Asdncreases. In Fig. 16 | plot 108 | | | T T

all the phase boundary results. They appear to converge as Lithium .
increases to the limiting line shown in the figure foe 1. ot e orscta

It appears from Fig. 16 that, except for hydrogen, the
phase boundaries all terminate at some lower limiting value 106 |
of Z. Whether this behavior is definitive or not has not been/\
resolved, owing to the rapid increase in computational time ¢
as lower densities are examined. In Fig. 17 | plot the pressure3
versusy for a constant value of which is less than the <
apparent lower limit of for the phase boundary of lithium.
The electron pressure appears of decrease rather smoothly
a manner proportional tg~1°. For medium values of, the
rate to decrease slows as the model pressure increases abc
that of the ideal Fermi gd®2], This behavior argues that, at T
least for smallZ, there is no phase transition and the atom
ionizes gradually and goes over smoothly to the fully ionized
ideal Fermi gas, although as this point has not been thor-

103 pressure ~ 0.1583y ~1°(Mbars)

pressure (M

oughly checked, | cannot be sure. For the smaller valugs of 10-3 1 I I 1 I

the pressure is within a few percent of the ideal Fermi gas 020 0.30 050 075 1.00
values. For constard, yo Y3 p6 andyo ;Y9 T4 Thus as y

y—o for fixed £, T—0 andp—0. Since by Eqgs(2.9) for FIG. 17. The pressure for the spherical cellular model of lithium

small £ and smally, pQ/NkT~1+Z, | expect p=(1  (z=3) at a constant de Broglie densify=0.023 045 9. The solid
+2) (83~ 1%as observed. Wheis large, the system is cold ine is the spherical model result and the dotted limeostly ob-
and dilute. Thus only the center of mass motion would bescured by the solid lineis the formula shown. The short-dashed
expected to contribute to the pressure. In this case, the facttine is a continuation of the expected largdimiting behavior.
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(1+2) would be replaced by 1. The extension of this as- ~ 00004 T | T T
ymptote is shown in Fig. 17. Excessive computing time has_
prevented the exploration of this region. Different behavior &
is expected and is illustrated for intermediate valuey.of
I now turn to the question of the internal energy. However &
before doing so, it is appropriate to discuss thermodynamicy
consistency. The point at issue is the 19T| term which
appears in Eq(2.4). As we know from thermodynamics,
given any of the usual thermodynamic quantities, we can&
construct the others in a thermodynamically consistent way =
However, that is not the approach that is often taken, buti 0.00000
rather what seems to be physically reasonable is used for =
say, the pressure and the internal energy. In the case at hanS_

0.00030

ydbe|

0.00015

units o

following that approach one would omit thlr,-/aT|Q term = Paladi
from the internal energy, which yields the physically reason-.& ~°% dladium 7
able energy 2 2600 eV
€ -0.00030 1 1 L L
E= 2 (5.2 ’ 0.00 0.25 0.75 1.00 1.25

] eXF[(Ej_M)/kT]"'l. r (?ﬁsgnits ofa,/2)

If one started from the “physically reasonable” internal  FIG. 18. Threerpdv(ry,,T,r/rp)/drp Vs ry, curves for different
energy, instead of using statistical mechanics to derive theensities for the spherical cellular model of palladiufi+(46) at a
Helmholtz free energy as | have done, then one would intetemperature of 2600 eV, is the Bohr radius. The abscissa is in
grate Eq.(2.4) with respect tdl to obtain the free energy and units ofay/2 and the ordinate is in units of 4 Ry.
then use Eq(2.5) to derive the pressure. In this case the

Helmholtz free energy would become electron distribution. For very low temperatures, the elec-

trons cluster around the ion, while for very high temperature,
AQ,T)=Nu(Q,T) they are reIative]y uniformly. distributed. This variation
causes self-consistent potentials to be temperature depen-
dent. A couple of examples are the Hartree or “self-
_sz IN(1+exp{[w(Q,T)— €1/ (kT)}) consistent field” approximatiohl13], and the confined atom
) method[19,20.
It may happen, as is the case with the Thomas-Fermi
. . dr model[23], that the contribution_ obe; /T always cgncels
+Tf > Q (5.3 out and so need not be considered. The behavior of the
1T exd(e—w)/kr]+1" ' Tdv/dT in the spherical, cellular model is apparently uni-
formly positive in the one-phase region and so cannot cancel,
The corresponding pressure is but does become relatively small for both large and siall
This feature can be understood physically by noticing that as

1 (?El

de€x the temperature increases the electrons tend towards a uni-
90 form distribution, rather than remaining clustered about the
pQ=-> T ion. This feature causes electrons to move away from the ion
k| exd(ex—w)/kT]+1 thus increasing .
The functionr,dv/dr, shows more interesting behavior
Q 9 (de as illustrated in Fig. 18. For low densitiéhat curve extends
ar | @ to larger values ofr) the electrons move away from the

central ion to take advantage of the extra available room

)
_T f
T exfl (&~ p)/kr]+1 leading to an increase in. On the other hand, for high

Qdel 9 le— densities, the electrons relax from the relatively uniform dis-
G A TR (e — /k71d tribution forced on them by the Pauli principle to be some-
0 exp (& —w)/kr]dr . : :
+_I_f°° T dT |7 Kt - what more clustered around the central ion. This behavior
. {extl(e,— )/kr]+1}2 : results in a smallev, as shown in Fig. 18. For intermediate

densities, a combination of these two behaviors is illustrated
(5.4  in that figure.
A typical illustration of the energy for the temperature
This approach is also worthwhile to investigate, but | shallgreater than the critical temperature is shown for lithium in
not do so here. Fig. 19. In this figure | display both the thermodynamically
The nub of the problem of thermodynamic consistency isconsistent internal energy, and what would be expected to be
the self-consistent potential. While the true physical potenthe physically reasonable energy. In this case these two en-
tials are independent of the temperature, the self-consistertgies differ. For both large and small values{pfthe dif-
potentials generally are not because they are based on tffierence tends to zero. For intermediate valueg tfie dif-
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FIG. 19. The “physically reasonable” enerdiabeled energy FIG. 20. The physically reasonable eneftgbeled energyand
and the internal energy vs the de Broglie density for the sphericalhe internal energy vs the de Broglie density for the spherical cel-
cellular model of lithium Z=3) at a temperature of 100 eV. The lular model of potassiumZ=19) at a temperature of 230 eV. The
short-dashed line is the low-density, total-ionization limit. open circles represent the phase boundaries for this temperature.
The solid circle represents the critical-point value{ofThe short-

ference can be quite significant. dashed line is the low-density, total-ionization limit.

In Fig. 20 I illustrate the behavior of the energies along an
isotherm which passes through the two-phase region. In thithe boundary conditions, Eq3.9), permit a lower energy
case, the energy and the internal energy have rather differegian that of a free atom. These two features make the com-
values in the lower-density phase, although, as was the cagirison of the spherical cellular model internal energies with
for a temperature above the critical temperature, they botkhe experimental values of the total-ionization energy as
are substantially equal in the higher-density phase. | expegfiven by Moore[24] difficult, and will not be attempted
that in the low-density limit both the energy and internal here.
energy will tend to the low-density, total-ionization limit.

The internal energy relates to the total-ionization energy ACKNOWLEDGMENT

in the following way. First, as the temperature is not zero,
there will be some ionization, so this effect tends to increase The author would like to acknowledge a number of help-

the internal energy above the total-ionization energy. Secondul conversations with J. D. Johnson.
APPENDIX A: COMPUTATION OF THE DERIVATIVES

First | define the quantities
2

& s - -1 - e o -
VV(H\):EZ (1T, ) [v(re, T.p)p |1 \(Fp.p)), HV(U\):E(@,V(%,PHP|¢|,>\(fblp)>,

Tu(ry,T.p)

ryv’(ry,T,p) e?
LA LAY UM = 2 (e, | = ),

eZ
— __ 713
Wl/(|7)\) rbZ <¢|,V| p

2
vion,y<|,x>=f—b22’3<¢|,y<rb,5>|p*1|¢>.,x<rb,5>>, (A1)

and the further quantities

V(LMT H ()72 V,(1LOH, (1A
FURNES SR AL TR YR GECCA TR ) %

DEN g|’,/_g|’)\ ' v#EN gl,y_gl,)\ 7 v#N
V(LW (1) HL (L)W, (1
A= 3, DEMWAN gy s ROV, (A2)
VEN g|’,, 5|,)\ v#EN gl,y 5I,)x
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V(LU (I Ho (1)U (1A
O =3 TN -3 OO,

VFEN gl,y_gl,}\ VFEN

_ Vion,v(lr)\)vy(lr)\) _ |on v(l )\)H (l 7\)
ion(la)\)_;)\ 5|,y—5|,x ’ Cion(lv)\)_;)\ 5 _5| \

_ Vion,v(li)\)wv(ll)\) _ Vion,V(Il)\)UV(Ii)\)
ion(la)\)_;}\ gl,y_gl,)\ ' G)ion(la)\)_;}\ 5|,v—5|,x .

To compute the last terms in Eq8.23 and(3.24), | need the derivative of the wave function

s 9.0 < Buu(Th.p) ( alnm*>
Z Wy =2 &g || 1 Ginry | VAT WL
* 2 2 2
+%z—1’3 (1+ &allnnr? )F(yf)—yfF’ yf”HV(I,)\)]. (A3)
b

Using Eq.(A3) | obtain, for the needed cake=0 whereV andH are real, the result

1 1 m* e’u(ry,T,riry) m*e?r? y_2 - _( alnm*) m*
Z rbar NG (1 ) ; + 4mrb 7 |pia(r)=|1+ ainry )\ m 1]A(ILN)
1 Jinm*| _[y* y? yz) m* (yz) ) ( JInm* | m* y2) 1(m*
- 2/ 2l e 7 1/3 o L N
+22 3[(1+ alnrb)F(Z> ZF(Z mF Z By +2z 1+ alnry mF Z +2 m 1
al * 2 2 2 * m* 2 1
X 1+%)F(%)—%F’(%)HCU \)— (l—m—)]-"(l N+ 52" 1/3F( )g(|,>\)+E 1—”% V,y(1,N)
- 1 y? m*_ (YA YRy 1/ m
2m ainry| AN T2 1’3F( )HK(I,A)}—HZ 1’3[F S|+ 5F <3H Hy (I,\) — (1——)wx(| N,
(A4)

for parallel spins. For antiparallel spins | get

2

J _ e r2 2 . 1 2 2
Zllsrbm<¢|,x(r)|TrgF(yf)Wl,)\(r)):EZ2/3[':(%) - yfF(

2

N[

y? Y
”F(?>B(I,)\)+Z 1’3F<f)0(l \)

2

1 2 2
A e T e I
In addition | need
e? - v(ry,T,rlry)
Zl/Srb<¢|r"(r)|r/ Tw’lh(r» VIOH)\(' M) =V (I,N),
e? d . Z  u(ry,Trlry) R
Zl/srbrbm<¢|,>\(r)|w_TW’L)\(V))

ﬁlnm*
=-W\(I,N)+2 (”nr )[A.on(l N) = A(LN) ]+ Fion(,N) = F(1LN)
1 dlnm y2\ oy (P
+52 1’3[ 1+ aln”’)F(f)—fF (?”[Cion(l,)\)—C(l,)\)] , (A6)

for parallel spins. For antiparallel spins | get
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e? Z (rp,T,rlry) -
! o = T g )

N| <

”[Cion(l ,)\)—C(l 17\)]]-

(A7)

1 y2| y?
=W, (I ,)\)+2[Ai0n(l,)\)—A(I,)\)Jr}“ion(l A= F(IN)+ Ezl’sz) - 7F'(

The next ingredient that | need is

[vv(l,x)+zz 3 Z H,(I,\)

T0¢|,x(rb,5): B (Tp.p) [Inm*
aT v#EN g|‘,,—5|')\ dinT

2
+U(I,N) - %zmyfF'(yf) HV(I,)\)J
(A8)

in order that | may compute

1/3T—<¢| }\(r)|{ (l_m_)ev(rb Tr/rb)+m* e’r (y?)]wI )

m r am r?

dlnm* [ m* 1 dlnm* _[y?\ y2 [y? y? m* dlnm* _[y?
- | =23 A A =2 L -3 | - 7
ainT ( m 1)A(I')\)+ZZ ainT F(Z) ZF Z) F z Bl +2 ( m 1 alinT F z
m* y? y2 m* m*_ . 1 m*
- F_l 7 C(I,N)— 1_F O(,N)+ ﬁz F F(I N)— 1—— U, (I,N)
* 2 * 2 2
y m® _ .3y y
13| 7 o 137 (7
+ oo A+ 5 z F<Z>HA(I,)\)} amZ °5F (Z)HA(I,)\). (A9)
For the antiparallel case, | get
y -
1/3T_<¢| A(r)|4 3 F(2)|¢|’)\(r)>
1 2 2 1 2 1 2 2
—52—2’3yf|:’<yf>|:(yf>3(|,>\)+Ez*’%(%)ru,x)—Zz-1/3y?|:’(yi)m(|,>\). (A10)
In addition | need the results
2 d - Z  v(ry,Triry)
_F%T(?_Tw”(r)'r/ —|¢>m r)

2 2(9Inmx

:z—%ux“’“‘a[—mm

1 y?
Aion(1,N) = A(ILN) + Ez_llgF(f)[CionU A)—C(l ,)\)]}

1 y? _ [y?
+Oion(I,N)—O(I,N)— 52‘1’33F’(7)[Caon(| ) —C( ,x)]], (A11)

for parallel spins and for antiparallel,

e _d . Z  o(ry,Triry)
_FﬂrbTﬁ_TwS"”(r)lr/_r r—|q'>| NG
¢’ e’ y2 (Y2
=5 UM = =1 Oion(1,M) = O (1N ) — z B ’(—)[Cion(l,h)—C(l,)\)] . (A12)
Iy Iy Z

A discussion of the actual computation ©f andv will be deferred to the end of this appendix. The quantiés, 7,
Fion» G, 0, 0., andIl’, which were defined above depend on these derivatives. They may be computed from a knowledge
of these derivatives and the functions
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3 m m) ) (214 1) 68 (1) by 2 (NI, (1V)
ro dk - 3
Voroud )= 2( 2m f 2 (66 (expile(K)— ulkT}+1)

MO [ g @D
oo )= 2 f K2 G g enmila, @k D) (AL3)

o1 m*m) o DG G AN Vi (1N
o)™ 2 2(1+ m fdkv% (&= &) XDl & 1 (K)— ]Ik} +1)

Thus | may compute

a[3 m* (N)/m](21 +1)W, (I,\) o1 [ <§ _} . ) )
2 Jd 2expile, )\(k KT+ 1) =e jo dr 4D(rb,T,r/rb) 4D (ryp, T,rlry) Jrpv’(rp, T,rlry)lr,

L3-me ML DU _ o (1 (§ 1 ) .
& Jd 4(expl & (K)— w]/KT}+1) fo dr| zPro Torfrp) = D7 (o T /o) [To(Fy, TrE)I,

L3-mr M+ DFLN) [ ,
~ fdk2(exp{[e.,A(E)—M]/kT}+1) fo ArVprod )10 (1 T F/1)IT,

{1+ mE OO+ D Forll ), (o
dk - —e?7 13| drl_, e TorIr o)
- f 2(expil €, (K)— pl/KT}+1) jo Mprod M)ov” (T T 1/ o)/T

S M )@IEDGIN) ,
= jdkm(eXp{[fl,x(E)_M]/kT}-i-1) jo ArHpraid Do (1 TH /)

»[3—m*()\)/m](2I+1)®(|,)\): o ya [ )
I% fdk2(exp{[e|,x(12)—,u]/kT}+l) fo drVprod D To(ry, TR/,

L1+m*()/M21+1)On(IN) (T .
= fdk 2ex@len R wlkTi+1) fo Arlprord D) To (o T /o) T,

.omr(N)@I+EDIAN) (T )
|§>; Jdkm(exp{[em(IZ)—,u]/kT}vL1)_ Jo drH i D To(ry, Tor/rp)/r. (Al4)

It is useful to collect the terms which contribute to the pressure and to the internal energy which inyaivér, and
Tdvl/dT. The corrections to the pressure and the internal energy on this account are

202.3023 . P(I,N) 202.3023 ,_ [ (v (3 1
Ap= 3 jdk = = 7€ j dr| =D(ry,T,rlry)— =D* (r,,T,r/ry)
Xg X exp{[ € \(k)— u]/kT}+1 X3 0 4 4

r
Xrbu’(rb,T,r/rb)/r+f bdr[meto(r)JrIprom(r)]rbv’(rb,T,r/rb)/r
0
Z—l/3

- F(?)Jobderroto(r)rbU’(rbaT1r/rb)/r"

ui,n) o sl (Mo, (3 1 :
Jd ~ =eZ f dr|{=D(ry,T,r/rp)— =D*(rp,T,r/ry) | To(ry, T,rlry)/r
[P exp{[ € \(k)— u]/kT}+1 0 4 4

-1/3

f dr[meto(r)+Iproto(r)]Tu(rb T,rlry)lr— —— (?) J;bdermto(r)Ti;(rb,T,r/rb)/r], (A15)
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where
3 m*(\) 1 m*(\) In order to compute the derivatives ©f | will need
P(I,)\)=(Z— am )WA(I,)\H—E 1+T>}"ion(l,)\)
1 3m*()\) (96|
27 om N s iy X (e w/KT]
N rpp’ (rp, T)=
om <A>Z_1,3F<y_2)g(|,h), Y {expL (e, — ) /KT]+ 112
2m Z 1
y exfl (e, — w)/KT]
u<|,x)=(§—m4::))ux(|,>\)+% 1+mT(M)®ion(|,>\) Ix {exd (e, —u)/KT]+1}?
(A18)
1 3m*(\)
+(§— o )(I,)\)
m*(\) __ y2 de
- Z llsF(f)F(l,A). (A16) | |T &_lli)\—em-l-,u, exf (e \— u)/KT]
The derivat Tu(ry, =2
e derivatives ob(ry,T,r/ry) are A {exq(e,m—ﬂ)/kﬂﬂ}?
Z—-1 _ -1
rov' (ry, T,r/ry)= T)rbfl 1_,8_r)[D(rb T,8) %S exl (e, —u)/kT]
) X {exil (e~ w)/KT]+1)2
+rpyD'(ry,T,58)]dB,
. Z—1 1 r
To(ry, T,rlry)= T)be (1— ﬁ_r) Equations(A18) together with Eqs(3.23—(3.25), (3.27)—
(r/ro) b (3.29, and(A3) complete the ingredients that | need to com-
XTD(ry,,T,B)dB. (A17) puteD’ andD:
|
Jd r
21+ 1)\ ()] P a(r)+ry ¢(|9th13( )}fz
rbD’(rb'T'”rb):Z% extl (e — p)/KT]+1
ry[o d
(214 Dip () () rPexil (0 — )/ KThr| 2= 50 }

{exd (e, — w)/kT]+1}?

¢|x()

(2I+1D)$(NT
EXFI(GH\—,LL)/kT]-Fl

TD(ry, T,rlry) =2,
I\

J
(21 +1)¢|’f}\(r)¢|,)\(r)r2exl:[(e|,)\—u)/kT] Tﬁ_T(EI,)\_M)'I'M_GI,)\

-3 (A19)
X KT{exf (& \—u)/KT]+1}2
|
Equation(A19) is written with the knowledge thap, ,(r) is APPENDIX B: CATALOG OF APPROXIMATIONS
real | have not yet programmed these equations foand The purpose of this appendix is to summarize in one place

v, but rather | have used a finite difference method employa list of the various approximations which are involved in
ing a variation of 1 part in 1000 in the temperature and themy approach. As the problem addressed is rather complex,
density. the list is long.
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Throughout this paper, when there are well defined func- A further issue is how the corrections to the Heitler-
tions whose exact computation is somewhat lengthy, | havéondon Hamiltonian should vanish in the limit gs— 0.
use Pad@pproximant representations which are typically ac-l have used a semiclassical approximation to resolve this
curate to within 0.1%. issue.

My use of a cellular model does not take into account the When | go beyond hydrogen, there afeelectrons in a
variation in either size or shape of the cells which would becell with an ion of chargetZe. This problem is currently
constructed by the Wigner-Seitz method of using planesntractable. As is well known the proper procedure is to in-
which bisect the lines connecting each ion with its nearestegrate
neighbor ions.

In addition it is a further approximation to treat the ions as zZ - - - -
Maxwell-Boltzmann particles. ]_1;[2 dri{é(ra, ... r[H=E@(ry, ... rz)=0
While it is exact for an ideal Fermi gas of chargeless (B1)

electrons to use a Bravais lattice cellular model, | have made

the further approximation to use spherical cells which incorhich yields a Heitler-London-type equation for the de-
porate the additional approximation that the ion is fixed afhendence of the wave function, but depends on a compli-
the center. However the center of mass motion is added tgated potential. The same must be done for all the other
the pressure and the energies. The periodic boundary conditectrons and a difficult self-consistency problem must be
tions, which were correct for the ideal Fermi gas, are used &plved. Of course, the Hartree wave function is fine for the
every point on the surface of the spherical cell. ion-electron interactions, but not so fine for the electron-

The Heitler-London Hamiltonian of the cellular model ejectron interactions. Instead | make the independent elec-
contains a term-(i%2/m*)k-V. In spherical coordinates, tron model approximation. To this end | have introduced a
this term, while diagonal in the component of angular mo- self-consistent, density and temperature dependent potential.
mentum, links every angular momentum componenith | compute this potential from the wave function through the
thel+1 andl —1 components. To reduce the very consider-use of Poisson’s equation. As a further approximation, rather
able computation effort which that feature entails, this termthan removing the contribution for the wave function of the
in the Hamiltonian is replaced by the sum of and — the  particular state being solved for, | simply remove Z frac-
root mean square of its values in the appropriate “nearlytion of the electron-electron interaction. These latter two ap-
degenerate block.” proximations are the least well controlled and probably the

To go beyond the Heitler-London Hamiltonian adjust- most significant approximations made in this approach.
ments are made to the potential in order to yield correct In addition to the approximations in the theory as de-
results in the limit asy—0. That is the approach to the scribed above, there are also numerical approximations as
ideal-gas limit. These adjustments are based on the idea thaell. In particular, the number of mesh steps used in the
the electron density is uniform throughout the cell. Howeverradial coordinate is, of course, finite. There is as well the
while this feature is correct for both large and small de Bro-differencing scheme which is used in the numerical imple-
glie densityZ, the resultant electron-ion energy dips by aboutmentation of the Schdinger equation, i.e., U1+ U;_;

6% when( is of the order of unity, which effect has not been —2u;)/A2. Together they limit the largest value that the ki-
accounted for. netic energy can have. Also, badl/dr anddv/d T are com-

The treatment of the exchange effects is also only apputed by a finite difference method instead of implementing
proximate. | use & dependent addition to the potential and the formulas of Appendix A. This method normally works
an effective massn* which depends on bothand when  well, but occasionally there are a different number of itera-
the two relevant electrons have parallel spins. The ion-iorions involved between the quantities being differenced,

exchange correction is neglected. which can sometimes cause a problem.
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