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Equation of state for a partially ionized gas. II

George A. Baker, Jr.
Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87544, USA

~Received 27 March 2003; revised manuscript received 16 May 2003; published 20 November 2003!

The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from
a fundamental point of view. A spherical cellular model is deduced for the hot curve limit~or ideal Fermi gas!.
Next the Coulomb interactions are added to the spherical cellular model for general ionic chargeZ. Then an
independent electron model within aZ electron cell plus several many-body effects are employed. Numerical
examples of the theory for several elements~H, Li, N, Na, K, Ni, Rb, Pd, Cs, and Er! are reported. These
results reduce in various limits of temperature and density to the expected behavior. They display electron,
localization-delocalization phase transitions of liquid-gas character. In the higherZ elements, a second possible
critical point has been found. The critical pressure, electron density and temperature for the lower-density
critical points seem to obey power laws as a function ofZ.
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I. INTRODUCTION AND SUMMARY

While the theory of crystalline solids has been very w
developed, the properties of fluids and amorphous so
considered at the level of the quantum mechanics of e
trons and ions have received much less attention. For c
talline solids Bloch’s theorem is frequently relied upon
provide the general structure of the necessary quantum
chanical wave functions. A study at the level of the quant
mechanics of ions and electrons was begun in a prev
paper@1#. In that paper quantum statistical mechanics w
used to develop a theory of a cellular model of a fluid. It w
the purpose of that paper to begin to construct a fundame
investigation of a partially ionized gas. Of course, there
not any firm dividing line between either a partially ionize
gas and a fully ionized gas, or a nonionized fluid. In th
paper the numerical evaluations of the theory were limited
hydrogen. It is the purpose of the present paper to investi
elements with more than one electron per atom. My res
have many of the expected physical properties. In the lo
density limit at fixed temperature full ionization is seen.
medium to high density, there is a density dependent t
perature below which the pressure is very insensitive to
temperature.

There are a number of other approaches to this prob
which are worthy of mention. Perhaps the most gener
used theories are the semiclassical theories of Thomas
Fermi @2–7# and their Thomas-Fermi-Dirac generalization
include the exchange interaction@8–10#. Further approache
are mentioned in Ref.@1#.

In Sec. II, I briefly recall the framework developed in Re
@1#. I set out the quantum statistical mechanical formali
for fermionic electrons and Maxwell-Boltzmann ions. Th
Helmholtz free energy is derived and from it the pressure
the internal energy are derived in the standard manner.
different feature is the appearance of the partial of the ene
eigenvalues with respect to the temperature in the form
for the energy. This term occurs because the self-consis
potential depends on the temperature. The true physica
teractions of course do not. The equations for the caseZ
electrons and an ion of charge1Ze are given.
1063-651X/2003/68~5!/056112~23!/$20.00 68 0561
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In Sec. III, I simplify the formulation described in th
preceding section by the introduction of an independent e
tron approximation inside the cell. The modification of th
size of the spherical cell for this approximation is discuss
The numerical accuracy requirements are also discusse
give expressions for the necessary derivatives with respe
the temperature and the radius of the spherical cell. T
method for the computation of the self-consistent potentia
described.

In Sec. IV, I report the results of the computation for t
spherical cellular model in the high- and low-density r
gimes. The expected temperature independence for high
sities and moderate temperatures is shown. Likewise
Gibbs free energym is found to be proportional to the two
thirds power of the density in the high-density limit, as e
pected. In this limit, the pressure for the spherical cellu
model is seen to be lower than that for the Thomas-Fe
model. I have studied the deviations from the low
temperature limit in the high-density region. I find that th
deviations are proportional toz22/3y28 instead of justz22/3

as expected. Herez is the de Broglie density, Eq.~2.9!, and
y2 is the ratio of the Coulomb energy to the thermal ene
Eq. ~2.9!. The smally limit is built into the model and the
deviations from the ideal gas are proportional toy2. For low
densities the coefficient of this term tends to zero and ay3

term is predicted by the exact theory@11#, but only very
rough agreement is seen.

In Sec. V, I report the numerical results for intermedia
densities. Here I find critical points and phase boundar
These features either indicate limits on the validity of t
model or possible plasma phase transitions. Various crit
points are reported for a sample of ten elements. The criti
point values of the pressure, electron density, and temp
ture more or less obey power laws as a function of the io
chargeZ. The plot of all the phase boundaries in thez-y
plane seems to show~except for hydrogen! a universal
boundary for the one-phase regions. There does not appe
be ~again except for hydrogen! any two-phase regions fo
small de Broglie density. I plot some examples of the sph
cal cellular model’s internal energy and its ‘‘physically re
sonable’’ energy, Eq.~5.2!.
©2003 The American Physical Society12-1
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GEORGE A. BAKER, JR. PHYSICAL REVIEW E68, 056112 ~2003!
In Appendix A, I give the results of long computation
which are required to evaluate the derivatives.

Finally, in Appendix B, for the convenience of the read
I give a list of the many approximations which are made
the spherical cellular model as implemented in this pape

II. FORMULATION OF THE CELLULAR MODEL

Before reviewing the formulation of the cellular model,
is worthwhile to quote briefly the necessary quantum sta
tical mechanical formulas that I will need. I will make th
Born-Oppenheimer separation and will treat the electron
fermions, but only treat the ions as Maxwell-Boltzmann p
ticles. I will need the pressure and the energy of an at
enclosed in a cell. I will suppose that the nucleus is fixed
the center of the cell. The most straightforward thing to co
pute is the grand canonical partition function which is n
mally given as@12#

Q~V,T!5 (N50
exp@Nm~V,T!/~kT!#QN~V,T!

5 (N50

`

(
$nj %

(nj 5N

exp$@m~V,T!2e j #nj /~kT!%

5)
j

„11exp$@m~V,T!2e j #/~kT!%…, ~2.1!

for the case of Fermi statistics. By taking the partial deriv
tive of lnQ with respect to the parameterm, I can obtain in
the usual manner,

N5(
j

1

exp@~e j2m!/kT#11
, ~2.2!

where N is the average number of occupied states of
system. Equation~2.2! fixesm, as a function of the tempera
ture and the volume. For the canonical partition functi
QN(V,T), as usual I havekT ln QN52A(V,T). A(V,T) is
the Helmholtz free energy. I deduce directly from Eq.~2.1!
in the usual way by considering only the term in the su
corresponding toN,

A~V,T!5Nm~V,T!

2kT(
j

ln„11exp$@m~V,T!2e j #/~kT!%….

~2.3!

The internal energy is given from the Helmholtz free e
ergy by the thermodynamic relation

U5A2T
]A

]T U
V

5(
j

e j2T
]e j

]TU
V

exp@~e j2m!/kT#11
. ~2.4!

I remark that normally,]e j /]TuV50 and so is not included
in the text book presentations. However, in my case,
05611
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treatment of the many-body effects induces a tempera
dependence in energy eigenvalues in the cellular equati
The term]e j /]TuV is not always small and leads to som
interesting behavior as is discussed in Sec. V. The pressu
also given from the Helmholtz free energy by the thermod
namic relation

p52
]A

]V U
T

5(
j

]m

]VU
T

2
]e j

]VU
T

exp@~e j2m!/kT#11
2N ]m

]VU
T

,

52(
j

]e j

]V U
T

exp@~e j2m!/kT#11
. ~2.5!

It will be useful to rewrite Eq.~2.5! in terms of the ‘‘radius’’
r b , or typical linear dimension of the cell as

pV52
1

3 (
j

r b

]e j

]r b
U

T

exp@~e j2m!/kT#11
. ~2.6!

The subscriptj is a general dummy index and will be re
placed later by the more specificl ,l, etc.

For the case of the ideal Fermi gas, Baker showed in R
@1# that if one divides space up into a simple cubic latti
structure~or any Bravais lattice for that matter! with an av-
erage of one Fermion per unit cell, then the appropriate
lution in the individual cell is identical to the exact solutio
for the ideal Fermi gas. Briefly, the discussion is as follow
Bloch’s theorem on crystal lattices@13# says that any solu-
tion for the ‘‘one-electron wave function’’ is of the form
c(rW)5eikW•rWf(rW), wheref(rW) has the periodicity of the lat-
tice. By using all thekW which lie in the first Brillouin zone,
one can construct the entire band corresponding to that s
By the general theory the combination of all the recipro
lattice vectors plus those in the first Brillouin zone covers
entirekW space. Here the boundary conditions are

c~rW !5e2 ikW•RW c~rW1RW ! ~2.7!

and

nW ~rW !•¹W c~rW !52e2 ikW•RW nW ~rW1RW !•¹W c~rW1RW !,

or

nW ~rW !•¹W f~rW !52nW ~rW1RW !•¹W f~rW1RW !, ~2.8!

wherenW (rW) is the outward normal vector to the surface of t
cell andRW is a lattice vector. These conditions provide for t
continuity of the wave function and its derivative at the su
face of the cell. From my point of view, every calculation
make must be reduced to a single cell and the macrosc
effects are reflected solely through the boundary conditio
and the effective mass and potential modifications.

The standard formulas@12# for the ideal electron gas are
2-2
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f n~z!5
1

G~n!
E

0

`zhn21e2hdh

11ze2h ,
4pr b

3

3
5

V

N
,

z5
ZN

2V S h2

2pmkTD
3/2

5 f 3/2~z!,

pV

NkT
5

f 5/2~z!

f 3/2~z!
, y25

Ze2

r bkT
, pV5

2

3
U, ~2.9!

wherez is the de Broglie density which measures the imp
tance of quantum effects,N is the number of electrons,V is
the volume,m is the electron mass, andz5exp(m/kT) in the
notation of Eq.~2.2!. The quantityy measures the ratio of th
-

r-
d

m

05611
-

Coulomb energy to the thermal energy, andU is the internal
energy.

The next step in the development of the cellular mode
to approximate the cell shape by a sphere. Since one ca
fill space with spheres of a uniform size, I choose the size
the spherical cell to be such that it has the average volu
occupied by a single fermion. The Schro¨dinger equation
separates in the usual spherical coordinatesr ,u, andf. The
eigenfunctions are the spherical Bessel functionsj l(pl ,lr ),
the Legendre polynomialsPl(cosu), and the exponentials
exp(imf), wherel andm are integers andi is the square root
of 21. I impose the boundary conditions of periodicity in a
directions, i.e., at every point of the surface, which ensu
the continuity of the wave function and its derivative for tw
such spheres in contact.

Baker @1# has given the following generalization for th
case of a cell with a1Ze charged nucleus andZ electrons.
The Schro¨dinger equation for this cellular model is
(
j 51

Z H \2

2m* @k222ikW•¹W j2¹ j
2#2

Ze2

r j
1

3Ze2

10r b
g~y2!J fl~rW1 , . . . ,rWZ!1H 1

2 (
j Þ l

Z
e2

urW l2rW j u
1

3e2

2r b
FS y2

Z D FZ2
1

3 (
j 51

Z S r j

r b
D 2

2
4

3
ZS 3Z

pz D 1/3

f 1/2„z~z!…G J fl~rW1 , . . . ,rWZ!1
6Z2e2

5r b
F~y2Z!fl~rW1 , . . . ,rWZ!

5El~kW !fl~rW1 , . . . ,rWZ!, ~2.10!
wherem* /m51 and thef 1/2 term is dropped for the antipar
allel spin case. Herem* is given by

m

m*
511A~z!

y2

Z
FS y2

Z D ,

A~z!5
2

3 S z

ZD 2/3S 3

p D 1/3H 2 f 1/2„z~z!…2X~z!/~pz!

f 5/2„z~z!… J .

~2.11!

This result is arrived at by starting with the Heitle
London equation which is valid in the cold, dilute limit an
by adding corrections, proportional toF and g. In the cold
dilute limit, F5g50. WhenF5g51, the equation is cor-
rect for the hot, ideal-gas limit through ordery2. The func-
tions F and g vary monotonically between 1 and 0 asy
varies between 0 and̀ . Baker in Sec. V of Ref.@1# has
given a semiclassical derivation of these many-body ter
He also derived the effective mass terms of Eq.~2.11! as part
of the exchange correction. The derivation ofX(z) is to be
found in Ref.@14#.

I separate out the state independent terms

El ,l5El ,l1DEior anti-i , ~2.12!
s.

where

DEuu52
3Ze2

10r b
g~y2!2

3Ze2

2r b
FS y2

Z D
3F12

4

3 S 3Z

pz D 1/3

f 1/2„z~z!…G2
6Z2e2

5r b
F~y2Z!,

DEanti-uu52
3Ze2

10r b
g~y2!2

3Ze2

2r b
FS y2

Z D2
6Z2e2

5r b
F~y2Z!.

~2.13!

Equation~2.10! simplifies to

(
j 51

Z H \2

2m* @k222ikW•¹W j2¹ j
2#2

Ze2

r j
J f l ,l~rW1 , . . . ,rWZ!

1H 1

2 (
j Þ l

Z
e2

urW l2rW j u
2

e2

2r b
FS y2

Z D (
j 51

Z S r j

r b
D 2J

3f l ,l~rW1 , . . . ,rWZ!5El ,l~kW !fl~rW1 , . . . ,rWZ!, ~2.14!

wherem* /m51 for the antiparallel case.
2-3
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The generalized expression fore l ,l(kW ) is

e l ,l~kW !5
1

2 S 11
m*

m D El ,l~kW !1
3Ze2

10r b
g~y2!1

3Z2e2

5r b
F~y2Z!

2
1

2 S 12
m*

m D ^f l ,lu(
j 51

Z
Ze2

r j
2

1

2

3(
j Þ l

e2

urW j2rW l u
uf l ,l&1

e2

r b
FS y2

Z D
3F3

4
Z1

m*

4m (
j 51

Z

^f l ,lu
r j

2

r b
2

uf l ,l&2ZS 3Z

pz D 1/3

3 f 1/2„z~z!…G . ~2.15!

For the antiparallel case,m* /m51 and the f 1/2 term is
dropped.

III. INDEPENDENT ELECTRON MODEL OF THE Z
ELECTRON CELL

Since theZ electron model is currently intractable, I con
sider the simplification of using ‘‘independent electrons
The first step, as was done by Hartree, is to use the form
the wave function,fl(rW1 , . . . ,rWZ)5) i 51

Z f i(rW i). In Eq.
~2.14! all the terms except the electron-electron interact
can be neatly divided so as to depend on the single-ve
variable rW i alone. By the method of the separation of va
ables, the equation for each single electron can be obta
by integration over the other electrons of the electro
electron interaction terms. Of course, as is well known, t
leads to a complex self-consistency problem. Instead, I
also impose the condition of a single, temperature and d
sity dependent, self-consistent charge density. With th
conditions I propose, instead of Eq.~2.14!, the equation,

H \2

2m* @k222ikW•¹W 2¹2#2
e2v~r b ,T,r /r b!

r

2
e2

2r b
S r

r b
D 2

FS y2

Z D J f l ,l~rW !5 Ẽl ,l~kW !f l ,l~rW !.

~3.1!

The potentiale2v(r b ,T,r /r b)/r is composed of two parts
The first is the electron-ion interaction which is justZe2/r as
seen in Eq.~2.14!. The second part is a representation of t
electron-electron interaction. Since I want to have the
ion potential at the origin I selectv(r b ,T,0)5Z. Since an
electron does not screen itself, I want to see the potentia
only a single ionic charge at the cellular surface, so I se
v(r b ,T,1)51. It is important to note however that, when
add up all the energies, I will have countedZ(Z21) terms,
when, as we saw in Eq.~2.14!, I should have only1

2 Z(Z
21) such terms. In the computation of thee ’s I must there-
fore subtract the extra terms off. The electron-electron rep
05611
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Ze2

r
2

e2v~r b ,T,r /r b!

r
. ~3.2!

Thus for the correspondinge,

e l ,l~kW !5
1

2 S 11
m*

m D F Ẽl ,l~kW !2
1

2
^f l ,l~rW !u

3S Ze2

r
2

e2v~r b ,T,r /r b!

r D uf l ,l~rW !&G
2

1

2 S 12
m*
m D ^f l ,l~rW !u

v~r b ,T,r /r b!e2

r
uf l ,l~rW !&

1
m* e2

4mrb
FS y2

Z D ^f l ,l~rW !u
r 2

r b
2

uf l ,l~rW !&1De ior anti-i ,

~3.3!

where the state independent part is

De uu5
3e2

10r b
g~y2!1

3Ze2

5r b
F~y2Z!

1
e2

r b
FS y2

Z D F3

4
2S 3Z

pz D 1/3

f 1/2„z~z!…G ,
Deanti-uu5

3e2

10r b
g~y2!1

3Ze2

5r b
F~y2Z!1

3e2

4r b
FS y2

Z D .

~3.4!

Again, for the antiparallel casem* /m51 and I drop thef 1/2
term. The modifications to take account of the exchange
many-body effects are included.

At this point, a technical complication arises. That is t
treatment of the termĤ52( i\2/m)kW•¹W in the spherical co-
ordinate basis. This term is not diagonal in that basis. Ba
@1# has noticed that there is near degeneracy of the st
characterized byv5l1@( l 11)/2#, where @x# means the
largest integer less than or equal tox. At this point, for rea-
sons of numerical expediency, he replaces the matrix
ments by plus or minus the root mean square value over
nearly degenerate block. This result depends on the qua

Tl ,l52
\2

2m
^ l ,m,lu¹ r̂

2u l ,m,l&. ~3.5!

By performing the sum of the matrix elements ofĤ2 overm
and then over the nearly degenerate block, Baker@1# obtains

F\2k̂B
2

2m
D̂v~k!G2

5
4

~L11!2 S \2k̂2

2m
D

3 (
l 50

L21 S 2l 11

3 DTl ,v2[( l 11)/2] , ~3.6!
2-4
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which gives the appropriate root mean square coefficien
the linear term inkW . This approximation is accurate to withi
22.5% –14.9%. D̂ is something like a bandwidth.

Before proceeding, it is worthwhile to describe the chan
in the spherical cell model to includeZ electrons in one
sphere. In the standard approach each electron is in its
sphere with a radius which is smaller by a factor ofZ1/3.
Thus,

r̂ b5S 3A
4pN0Zr D 1/3

57.344 99531029S A
Zr D 1/3

cm,

~3.7!

whereA is the gram atomic weight andN0 is Avogadro’s
number. The equation for the noninteracting case is

\2

2m
@ k̂222i k̂W•¹Wr̂2¹ r̂

2
#f l ,l~ r̂W !5 Ẽl ,l~ k̂W !f l ,l~ r̂W !, ~3.8!
05611
of

e

n

subject to the boundary conditions

nW •¹W feven~ r̂Wb!50, fodd~ r̂Wb!50, ~3.9!

wherenW is the unit normal vector to the sphere. The releva

k̂W are those in the first Brillouin zone,uk̂W u< k̂B where k̂B

5(9p/2)1/3/ r̂ b . I also definekB5(9p/2)1/3/r b , where r b

5A3 Zr̂b .

In the case wherek̂W50W , the radial part of the wave func
tions are the spherical Bessel functionsj l( p̂l ,l r̂ ) where

j l~ p̂l ,l r̂ b!50, l odd,

j l8~ p̂l ,l r̂ b!50, l even ~3.10!

are the boundary conditions. The normalization condit
which determinesm is
the

,

15
2V

ZN

1

~2p!3
E dk̂W

1 1expS \2k̂2

2mkT
2

m

kT
D

5
3

2p
E dk̂W / k̂B

3

1 1expF S 6p2ZN

V
D 2/3 \2

2mkT

k̂2

k̂B
2

2
m

kTG
'3(

l 50

`

~2l 11! (
n50

` E
0

1

dk̂k̂2H 1

11exp@~1.5Apz!2/3~el ,n1k̂21k̂D̂n1[( l 11)/2]!2m/kT#

1
1

11exp@~1.5Apz!2/3~el ,n1k̂22k̂D̂n1[( l 11)/2]!2m/kT#
J , ~3.11!

where I use the notationel ,n5 p̂l ,n
2 / k̂B

2 and where 352333 1
2 and the 2 is for the two electron states, the 3 normalizes

integral, and the1
2 compensates for the two6D̂ terms.z is as defined in Eq.~2.9!, andk̂5 k̂/ k̂B . In this section and beyond

N denotes the number of ions, andZN the number of electrons.
For the pressure, remembering thatpV is just 2

3 of the energy I get

pV

ZNkT
'2~1.5Apz!2/3(

l 50

`

~2l 11! (
n50

` E
0

1

dk̂k̂2H el ,n1k̂21k̂D̂n1[( l 11)/2]~kB!

11exp@~1.5Apz!2/3~el ,n1k̂21k̂D̂n1[( l 11)/2]!2m/kT#

1
el ,n1k̂22k̂D̂n1[( l 11)/2]~kB!

11exp@~1.5Apz!2/3~el ,n1k̂22k̂D̂n1[( l 11)/2]!2m/kT#
J . ~3.12!
to

e of
Let us expand the volume to encompassZ electrons in-
stead of 1. Then Eq.~3.9! becomes

nW •¹W feven~Z1/3r̂Wb!50, fodd~Z1/3r̂Wb!50. ~3.13!
The electron-ion interaction is given by Eq.~3.1! in a sphere
of radius r b . For the independent electron case I need
transform this equation to the smaller sized sphereurWu< r̂ b
appropriate to the single independent electron. The chang
variables isr̂ 5r /Z1/3 and k̂5Z1/3k, which gives
2-5
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Z2/3H \2

2m*
@k222ikW•¹W 2¹2#2

e2Z21/3v~r b ,T,r /r b!

r

2
e2Z21/3

2r b
S r

r b
D 2

FS y2

Z
D J f l ,l~rW !

5 Ẽl ,l~kW !f l ,l~rW !. ~3.14!

The overall factor ofZ2/3 on the left hand side convert
the divisor inel ,n from k̂B

2 to kB
2 . This result is in accord with

the well known result that, for the ideal Fermi gas,m is a
function of z alone.
05611
For the sake of clarity, I summarize. Eq.~3.1! becomes

H \2

2m* @k222ikW•¹W 2¹2#2
e2Z21/3v~r b ,T,r /r b!

r

2
e2Z21/3

2r b
S r

r b
D 2

FS y2

Z D J f l ,l~rW !

5El ,l~kW !f l ,l~rW !, ~3.15!

with the boundary conditions given by Eq.~3.9!. In the
spherical cell approximation the normalization conditi
which determinesm is
153(
l 50

`

~2l 11! (
n50

`

E
0

1

dk̂k̂2H 1

11expH ~1.5Apz!2/3Fel ,n1
1

2
S 11

m*

m
D ~ k̂21k̂D̂n1[( l 11)/2]!G2m/kTJ

1
1

11expH ~1.5Apz!2/3Fel ,n1
1

2
S 11

m*

m
D ~ k̂22k̂D̂n1[( l 11)/2]!G2m/kTJ J , ~3.16!

where now the dimensionless form of the eigenvalue is

el ,n5
2me l ,n~0W !

\2kB
2

. ~3.17!

For the correspondinge,

e l ,l~kW !5
1

2 S 11
m*

m D FEl ,l~kW !2
1

2
^f l ,l~rW !uS Z2/3e2

r
2

e2v~r b ,T,r /r b!Z21/3

r D uf l ,l~rW !&G
2

1

2 S 12
m*
m D ^f l ,l~rW !u

v~r b ,T,r /r b!e2Z21/3

r
uf l ,l~rW !&1

m* e2Z21/3

4mrb
FS y2

Z D ^f l ,l~rW !u
r 2

r b
2

uf l ,l~rW !&1De.

~3.18!
el
ntly

pu-
for
ig-
-
ata

rge
ves,
ge

lts
but
re-
where the state independent part is

De uu5Z21/3H 3e2

10r b
g~y2!1

3Ze2

5r b
F~y2Z!

1
e2

r b
FS y2

Z D F3

4
2S 3Z

pz D 1/3

f 1/2„z~z!…G J ,

Deanti-uu5Z21/3H 3e2

10r b
g~y2!1

3Ze2

5r b
F~y2Z!1

3e2

4r b
FS y2

Z D J .

~3.19!

Again, for the antiparallel casem* /m51 and I drop thef 1/2
term.
It is not trivial to organize the spherical cellular mod
equations so that they can be implemented with curre
available computers. Indeed, there are rather serious com
tational challenges in the production of numerical results
this model. Not surprisingly, the problems become more s
nificant as the value ofZ increases. Unless the work is prop
erly organized, there is the issue of having to store more d
in high speed memory than is available in even very la
modern computers. If one stores the data on the hard dri
then the computation slows down by an impractically lar
amount. The equations of Appendix A~together with those in
the body of the paper! implicitly lay out how I have solved
the computational organization in order to get the resu
reported. This method does solve the storage problem,
even so, hundreds of hours of work station time were
quired.
2-6
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When I evaluate these equations numerically, there is
issue of the number of values ofl required. I impose two
conditions. First that the minimum of the potential for th
largest value ofl lies on the surface, or outside the ce
Second that the potential value at the surface for that valu
l be at least 15kT which gives a factor of about 1026 for
those states. These conditions imply that

L>
1

2
@A117.082731x0~Z2/3115Z/y2!21#110,

~3.20!

where the 10 is just added for safety’s sake.
A sufficient number of mesh spaces for the radial coor

nate was determined by Baker@1# for the caseZ51 to be the
maximum of 16x0 and 2x0AT whereT is in eV, and
05611
e

of

i-

x05S 128

9p2D 1/3
me2r b

\2
51.567 778S A

r D 1/3

,

2r bme2

\2
51.770 682 75x0 , ~3.21!

with r in g/cm3. On account of the factor ofZ2/3, and the
known dependence of the eigenfunctions, I take the m
spacing to be the maximum of 16Z2/3x0 and 2x0AT. The
number of mesh spaces in thek integration remains un-
changed at 16(1.5Apz)1/3, as theZ dependence is incorpo
rated in the definition ofz.

By Eqs. ~2.4! and ~2.6! in order to compute the pressur
and the internal energy, I need in addition to thee ’s, their
derivatives with respect tor b andT. First following Appen-
dix A of Baker @1#, I need
r b

]E
]r b

52S 21
] ln m*

] ln r b
D E1Z21/3r b

3E drW f* ~r b ,rW !H 2
e2r bv8~r b ,T,r!

r

2S 11
] ln m*

] ln r b
D Fe2v~r b ,T,r /r b!

r
1

e2

2r b
S r

r b
D 2

FS y2

Z
D G1

e2

2r b

r2
y2

Z
F8S y2

Z
D J f~r b ,rW !, ~3.22!

whererW [rW/r b . Using this result, I can write

r b

]

]r b

e l ,l~kW !52
1

2
S 11

m*

m
D S S 21

] ln m*

] ln r b
D F El ,l~0W !1

\2k2

2m*
6

\2kB
2

2m*
D l ,l~k!G2Z21/3^f l ,l~rW !u H e2r 2

2Zrb
3

y2F8S y2

Z
D

2S 11
] ln m*

] ln r b
D Fe2v~r b ,T,r /r b!

r
1

e2r 2

2r b
3

FS y2

Z
D G J uf l ,l~rW !&D 1

1

2m

]m*

] ln r b

3F El ,l~0W !1
\2k2

2m*
6

\2kB
2

2m*
D l ,l~k!2

1

2
^f l ,l~rW !uS Z2/3e2

r
2

e2v~r b ,T,r /r b!Z21/3

r
D uf l ,l~rW !&G

1r b

]

]r b

De uu2
1

2
Z21/3S 11

m*

m
D ^f l ,l~rW !u

e2r bv8~r b ,T,r!

r
uf l ,l~rW !&1Z21/3r b

]

]r b
^f l ,l~rW !u

3F2
e2

2r b
S 12

m*

m
D v~r b ,T,r /r b!

r /r b

1
m* e2r 2

4mrb
3 FS y2

Z
D G uf l ,l~rW !&1

e2

4Z1/3r b

S 11
m*

m
D ^f l ,l~rW !u

3S Z

r /r b

2
v~r b ,T,r /r b!

r /r b
D uf l ,l~rW !&2

e2

4Z1/3r b

S 11
m*

m
D r b

]

]r b
^f l ,l~rW !uS Z

r /r b

2
v~r b ,T,r /r b!

r /r b
D uf l ,l~rW !&

~3.23!

for the case of parallel spins. For the case of antiparallel spins, I write
2-7
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r b

]

]r b
e l ,l~kW !522FEl ,l~0W !1

\2k2

2m*
6

\2kB
2

2m*
D l ,l~k!G1Z21/3^f l ,l~rW !uF e2r 2

2Zrb
3

y2F8S y2

Z D2
e2v~r b ,T,r /r b!

r

2
e2r 2

2r b
3

FS y2

Z D G uf l ,l~rW !&2Z21/3^f l ,l~rW !u
e2r bv8~r b ,T,r!

r
uf l ,l~rW !&

1Z21/3r b

]

]r b
^f l ,l~rW !u

e2r 2

4r b
3 FS y2

Z D uf l ,l~rW !&1
e2

2Z1/3r b

^f l ,l~rW !uS Z

r /r b
2

v~r b ,T,r /r b!

r /r b
D uf l ,l~rW !&

1r b

]

]r r
Deanti-uu2

e2

2Z1/3r b

r b

]

]r b
^f l ,l~rW !uS Z

r /r b
2

v~r b ,T,r /r b!

r /r b
D uf l ,l~rW !&, ~3.24!

where

r b

]

]r r
De uu52

e2

r b
Z21/3H 3

10
g~y2!1

3

10
y2g8~y2!1

3

5
Z@F~y2Z!1y2ZF8~y2Z!#1

3

4 FFS y2

Z D1
y2

Z
F8S y2

Z D G
2S 3Z

pz D 1/3F f 1/2„z~z!…
y2

Z
F8S y2

Z D13z f 1/28 „z~z!…FS y2

Z D G J ,

r b

]

]r r
Deanti-uu52

e2

r b
Z21/3H 3

10
g~y2!1

3

10
y2g8~y2!1

3

5
Z@F~y2Z!1y2ZF8~y2Z!#1

3

4 FFS y2

Z D1
y2

Z
F8S y2

Z D G J . ~3.25!

Again, for the antiparallel casem* /m51 and I have dropped thef 1/2 terms. In the above equations,F8, f 1/28 , andg8 are the

derivatives with respect to the arguments.v8 is the derivative with respect tor b . In the following equations,v̇ is the derivative
with respect toT.

The details of the calculation of the above quantities and also those for the temperature derivatives are treated in A
A.

Next I need the derivative of Eq.~3.18! with respect toT. The first ingredient that I need is

T
]E
]T

52
T

m*

]m*

]T H E1Z21/3E drWf* ~rW !Fe2v~r b ,T,r /r b!

r
1

e2r 2

2r b
3 FS y2

Z
D Gf~rW !J

1Z21/3E drWf* ~rW !Fe2F8S y2

Z
D y2

2r bZ
S r

r b
D 2

2
e2Tv̇~r b ,T,r /r b!

r
Gf~rW !. ~3.26!

Hence I have

T
]

]T
e l ,l~kW !52

] ln m*

] ln T F1

2
El ,l~kW !1

1

2
Z21/3S 11

m*

m
D ^f l ,l~rW !u

e2v~r b ,T,r /r b!

r
1

e2r 2

2r b
3

FS y2

Z
D

1
m*

4m
S Z2/3e2

r
2

e2v~r b ,T,r /r b!

r
D uf l ,l~rW !&G1

1

2
Z21/3S 11

m*

m
D ^f l ,lu

e2r 2

2r b
3

F8S y2

Z
D y2

Z

2
e2

r
Tv̇(r b ,T,r /r b)uf l ,l~rW !&1Z21/3T

]

]T
^f l ,l~rW !u H 2

1

2
S 12

m*

m
D e2v~r b ,T,r /r b!

r

1
m*

4m

e2r 2

r b
3 FS y2

Z
D J uf l ,l~rW !&2

e2

4Z1/3r b

S 11
m*

m
DT

]

]T
^f l ,l~rW !u

Z

r /r b
2

v~r b ,T,r /r b!

r /r b
uf l ,l~rW !&1T

]

]T
De uu ,

~3.27!
056112-8



en

os
h

ial
s

ver
/
n-
ial.

era-

en

n.

ed

pro-
ally
d

this

EQUATION OF STATE FOR A PARTIALLY . . . . II PHYSICAL REVIEW E68, 056112 ~2003!
and for the antiparallel case,

T
]

]T
e l ,l~kW !5Z21/3^f l ,lu

e2r 2

2r b
3

F8S y2

Z D y2

Z

2
e2

r
Tv̇~r b ,T,r /r b!uf l ,l~rW !&

1Z21/3T
]

]T
^f l ,l~rW !u

m*

4m

e2r 2

r b
3 FS y2

Z D uf l ,l~rW !&

2
e2

2Z1/3r b

T
]

]T
^f l ,l~rW !u

Z

r /r b

2
v~r b ,T,r /r b!

r /r b
uf l ,l~rW !&1T

]

]T
Deanti-uu ,

~3.28!

where

T
]

]T
De uu52

3

10
Z21/3g8~y2!y22

3Z5/3e2

5r b
y2F8~y2Z!

2
e2

r b
Z21/3F8S y2

Z D y2

Z F3

4
2S 3Z

pz D 1/3

f 1/2~z!G
1

e2

r b
Z21/3FS y2

Z D F2S 3Z

pz D 1/3

f 1/2~z!

1
3

2 S 3Z

pz D 1/3

z f 1/28 ~z!G ,
T

]

]T
Deanti-uu52

3

10
Z21/3g8~y2!y22

3Z5/3e2

5r b
y2F8~y2Z!

2
3e2

4r b
Z21/3F8S y2

Z D y2

Z
. ~3.29!

Next I consider the problem of the self-consistent pot
tial. To this end, I use Poisson’s equation

¹2V~rW !5e2%. ~3.30!

The potentialV is obtained from the charge density% by the
solution of this equation. To be consistent with Eq.~3.1!, I
take the convention that the electron charge density is p
tive instead of the usual convention that it is negative. T
solution for a heterogeneous sphere of radiusr b with spheri-
cal symmetry is@15#

V~r !52e2
1

r E0

r

%~a!a2da2e2E
r

r b
%~a!ada

~3.31!

which is
05611
-

i-
e

rV~r !/e252E
0

r b
%~a!a2da1E

r

r b
%~a!a2da

2r E
r

r b
%~a!ada. ~3.32!

Now, the first term on the right hand side is just2Z. To
complete the computation of the potential, I need to addZ to
take account of the central ionic charge. Thus,

rV~r !/e25E
r

r bS 12
r

a D%~a!a2da. ~3.33!

Done properly, to obtain the self-consistent potent
2e2v(r r ,T,r /r b)/r , the electron density which correspond
to the state being computed in the solution of Eq.~3.1!
should be subtracted from the total charge density. Howe
I will instead simplify the process by subtracting the 1Z
fraction of the density. There will of course then be an u
compensated unit ionic charge contribution to the potent
Thus I obtain

v~r b ,T,r /r b!511S Z21

Z D r bE
(r /r b)

1 S 12
r

br b
D

3D~r b ,T,b!db. ~3.34!

For the case of a uniform densityD(r b ,T,r /r b)53Zr2/r b
3 ,

and v(r b ,T,r /r b)5Z1 1
2 (Z21)@(r /r b)323(r /r b)#. I use

this value as an initial guess to start the self-consistent it
tion process. The potential of Eq.~3.34! corresponds to the
complete ionic charge at the origin, and just the hydrog
potential at the surface of~and outside! the sphere. WhenZ
51, this potential reduces correctly to that for hydroge
The cellular model charge density is

D~r b ,T,r /r b!5(
l ,l

~2l 11!f l ,l* ~r !f l ,l~r !r 2

exp@~e l ,l2m!/kT#11
. ~3.35!

To complete the calculations, I will also need the weight
charge density

D* ~r b ,T,r /r b!5(
l ,l

m* ~l!~2l 11!f l ,l* ~r !f l ,l~r !r 2

m$exp@~e l ,l2m!/kT#11%
,

~3.36!

where in statesl with antiparallel spins,m* (l) is taken to
be m.

I have programmed these equations for a computer to
duce the pressure, the internal energy, and the ‘‘physic
reasonable’’ energy~5.2! as functions of the temperature an
the density. I report the results of computations made for
model in the following two sections.
2-9
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IV. LIMITING CASES

The equation of state tends to that of the ideal Fermi
~plus the Maxwell-Boltzmann behavior of the ions! in a
number of special limiting cases. The most obvious cas
when y→0. Here the structure of the many-body terms,
discussed in the preceding section, is such that the idea
limit and the leading order terms@O(y2)# are correctly
given. Note that the spherical approximation for the ce
causes a few per cent fluctuation about the correct ideal
value. For the pure ideal-gas case, this fluctuation is
more than 5%.

The next limiting case of interest is the behavior of a ve
dense system. It is well known that in this limit the kinet
energy per electron@see Eq.~2.9!# is proportional tor2/3,
while potential energy is only proportional tor1/3. Thus I
expect the kinetic energy to dominate and the system to
to ideal-gas behavior in this limit. The system will be a
proximately independent of temperature for the tempera
below the Fermi temperature.

When the temperature is small compared tom, defined by
Eq. ~2.2!, and the system is dense, the level density at
Fermi surface is approximately that of an ideal gas. Thu
may follow the standard derivation~see, for example, Ref
@12#! to find the temperature variation to leading order. T
result is

p5p~T50,V!F11
5p2

12 S T

m D 2

1•••G ,
U5U~T50,V!F11

5p2

12 S T

m D 2

1•••G . ~4.1!

One expects, as the ideal-gas behavior only depends oz,
that m}r2/3 in the high-density limit. This behavior is illus
trated for lithium in Fig. 1. Figure 2 shows the behavior
the cellular model pressure with Coulomb interactions. T
dominant physical behavior of temperature independence
high density and modest temperature is well illustrated
Fig. 2. Here the electron pressure divided by the ideal-
pressure shows rather good data collapse for the cas
lithium. It is of interest to compare the high-density behav
~in the one-phase region! with that of the Thomas-Ferm
model evaluated at zero temperature@14#. I show such results
for cesium atT51 eV in Fig. 3. The spherical cellular mode
pressure decreases relative to the Thomas-Fermi pressur
ticeably in this region as the density decreases. We also
in this figure that the Thomas-Fermi pressure is less than
ideal-gas pressure. I have investigated numerically the de
ture from the limiting curve seen in Fig. 2, and I find that
is rather different from that predicted by Eq.~4.1!. I illustrate
these results in Fig. 4 for the case of potassium. I have
termined numerically that in the limit of high densities, th
deviation

D512
pelectron~r,T!pideal~r,T50!

pideal~r,T!pelectron~r,T50!
~4.2!
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from the zero-temperature limit isD� d̂(Z)/Ty12. The sym-
bol � means asymptotic. Put otherwise the deviation
D�d(Z)/y8z2/3. I have estimated thatd(3)'2.13105,
d(19)'3.43107, d(55)'5.73109.

In the low-density limit, Baker and Johnson@14# found
from the perturbation expansion that

pelectron~V,T!

pideal~V,T!
�12

1

A3

~Z11!3/2

2Z
y31¯ . ~4.3!

FIG. 1. The chemical potentialm of the spherical cellular mode
for lithium (Z53) vs the density. These results are for the 1-
isotherm. The dotted line shows the asymptote proportional tor2/3.

FIG. 2. The ratio of the electron pressure to the ideal-gas p
sure for several lithium (Z53) isotherms at high density.
2-10
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When one remembers thatpideal is the ideal~uncharged! elec-
tron gas pressure, then it is easy to see that Eq.~4.3! displays
just the classical Debye-Hu¨ckel correction term@16#. I do not
see this simple behavior for the low-density limit. The reas
is either that the higher-order terms iny are very important or
that the approximations involved in this model do not a
equately reproduce this limiting behavior. Equation~4.3!
does however, generally speaking, indicate where the sp

FIG. 3. The dashed line is the ratio of the electron pressur
the ideal Fermi gas pressure and the solid line is the ratio of
electron gas pressure to theT50 Thomas-Fermi theory pressur
The electron gas pressure is that computed from the spherica
lular model of cesium (Z555) atT51 eV.

FIG. 4. The deviationD512@pelectron(r,T)pideal(r,1 eV)#/
@pelectron(r,1 eV)pideal(r,T)# from the zero-temperature limit@Eq.
~4.2!# approximated here by the 1-eV curve! of the pressure for
several potassium (Z519) isotherms at high density.
05611
n

-

ri-

cal cellular model results begin to deviate from the ideal g
I have illustrated a typical case~potassium! in Fig. 5.

V. NUMERICAL RESULTS

In the preceding section I was concerned with the hig
and low-density limits. In this section I will look at the in
termediate cases. Since the region of principal interest is
one-phase region, it is important to investigate any poss
critical points and their pendant phase boundaries. The c
cal points described in this section are basically in
plasma regime and are not relevant to the ordinary, fami
gas-liquid transitions. They probably represent localizatio
delocalization transitions as the electrons from various sh
are ionized. As an example, the gas-liquid critical tempe
ture of sodium was found experimentally@17# to be about
0.222 eV which is about 1000 times smaller than what
found here. The previous results@1# for hydrogen have com-
pared well with a number of other calculations as reported
Ref. @18#. The author is unaware of theoretical estimates
the critical-point parameters for ‘‘plasma phase transition
for elements with higherZ.

I have computed, using the criteria

]p

]V U
T

5
]2p

]V2U
T

50, ~5.1!

approximate values for the critical points which are implie
In order to locate these critical points, I have computed
number of isotherms and plotted the pressure against
volume. An illustration is shown in Fig. 6 for nitrogen.
have used the Maxwell equal area construction to locate
proximately the phase boundaries. To locate the critical po
I interpolate between nearby isotherms. The interpolat
function is linear in the temperature and a cubic in the v

to
e

el-

FIG. 5. The ratio of the electron pressure to the ideal-gas p
sure for several potassium (Z519) isotherms at low density. The
dot-dashed curve is the result of Eq.~4.3!.
2-11
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ume. The reason for the use of a cubic is that on the crit
isothermp2pc}(V2Vc)

3 in the neighborhood of the criti
cal pointTc ,Vc .

It happens for the elements with higher values ofZ that
~at least! two separate critical points can occur. I illustra
this case for erbium in Fig. 7. Since the imputed two-ph
regions encompass the highly complex phase diagram
solid state physics, I interpret these obtained critical prop
ties as a possible indication of the general location of
limits of applicability of this model. However, if there are i
fact plasma phase-transitions, then the actual region of va
ity may not be limited by these computed critical pheno
ena. I report results forZ51, 3, 7, 11, 19, 28, 37, 46, 55, an
68. That is, for hydrogen, lithium, nitrogen, sodium, pota
sium, nickel, rubidium, palladium, cesium, and erbium.

It is of some interest to see a typical, radial, electron d
sity. In Fig. 8 I have plotted the results of the spherical c
lular model for erbium over a range of densities. It will b
observed that at the lowest density on the surface of
sphere the density does not vanish. This feature is due to
boundary conditions which, for even parity states, impo
the condition that the radial derivative vanishes and not
wave function. It is well known@21# that this condition,
which is similar to the so called ‘‘metallic bond,’’ may lea
to a lower energy state than that for an isolated atom. As
density increases, the change in the radial, electron den
profile reflects, as one would expect, the pressure ioniza
of the atoms.

In Figs. 9–11, I plot the critical values of the electro
pressure, electron density, and the temperature. The po
laws plotted in these, and in subsequent figures, are
intended to indicate general trends as there are manife
significant deviations from them. A second critical point h

FIG. 6. Some isotherms for nitrogen (Z57). The breaks in the
curves occur when the computed pressure is negative. This fe
is interpreted as the low part of a ‘‘van der Waals loop’’ which is
be replaced by a flat line determined by the Maxwell constructi
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FIG. 7. An isotherm for erbium (Z568). This case illustrates
the possibility of having two two-phase regions. TheT51300 eV
isotherm is illustrated by the dashed curve. The Maxwell constr
tion which maintains monotonicity of the pressure as a function
the volume for a fixed temperature is shown by the solid horizon
lines. The reason that the equal area feature of the Maxwell c
struction is not visually apparent is that the volume is plotted o
log scale so that the low volume two-phase region would be cle
seen. The discontinuities in slope result from the joining of t
computed values by straight lines.

FIG. 8. The radial, electron density timesr 2 computed for the
spherical model for erbium,Z568, at a temperature of 4000 eV
For high compression, the weighted sum ofc2 is nearly constant,
whereas for lower densities, a concentration is seen.a0 is the Bohr
radius.
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EQUATION OF STATE FOR A PARTIALLY . . . . II PHYSICAL REVIEW E68, 056112 ~2003!
been found for nickel and for all the elements studied w
larger values ofZ. I speculate that the occurrence of mo
than one critical point is related, crudely speaking, to
successive ionization of the various electron shells.

In Fig. 12, I plot the critical values ofyc , the ratio of the
Coulomb energy to the thermal energy. This plot shows
interesting structure. The structure shown here can be in
preted to lend further support to the idea that the cellu
model does reflect to some limited extent the known sh

FIG. 9. The values of the critical-point electron pressurepc vs
the ion chargeZ for a few selected elements. The dotted line sho
the power law. The values for the two distinct critical points fou
for each element are connected by dashed lines.

FIG. 10. The values of the critical-point electron densityZrc /A
vs the ion chargeZ for a few selected elements.A is the gram
atomic weight. The dotted line shows the power law. The values
the two distinct critical points found for each element are connec
by dashed lines.
05611
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structure of the atoms. I emphasize that these effects are
put in artificially but follow from the solution of Eq.~3.15!.
In Fig. 13 I plot the critical values of the de Broglie densi
zc . The low-density critical-point values trend upward a

s

r
d

FIG. 11. The values of the critical-point temperatureTc vs the
ion chargeZ for a few selected elements. The dotted line shows
power law. The values for the two distinct critical points found f
each element are connected by dashed lines.

FIG. 12. The critical point values ofyc vs the ion chargeZ for a
few selected elements. It is to be noted that, for the low-den
critical points, the value shifts from the hydrogen value (1s electron
shell! to a different value when the 2s electron shell begins to fill.
At about the value ofZ where the 3d electron shell begins to fill,
the high-density critical points appear. The value ofyc remains
relatively constant for both the high-density and the low-dens
critical points.
2-13
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reflect the increasing importance of quantum mechanics.
values for the high-density critical point are roughly const
and much larger than those for the low-density critical po
As a final remark, the lack of really smooth behavior is n
surprising and presumably reflects to some degree the e
tronic shell structure of the atoms.

I list in Table I the critical-point values which I hav
determined for the spherical cellular model. The tempera
is in eV, the density is in g/cm3, and the pressure is in Mbar
The ratiopcVc /ZNkTc relates to the law of correspondin

FIG. 13. The values of the critical-point de Broglie densityzc vs
the ion chargeZ for a few selected elements. The dotted lines co
nect values for the high- and low-density results. Aszc increases,
the quantum effects become increasingly important.
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states and is not completely constant. The ratioZr/A is the
electron density. In the cases where there are two crit
points listed for an element, the values are listed in the sa
order for each of the various quantities.

I have computed the phase boundaries pendant to
critical points. A typical example is that for nickel as show
in Fig. 14. It is undoubtedly true that the behavior at t
critical point is rounded and quadratic in form, however

-
FIG. 14. The phase boundary of the spherical cellular mode

nickel (Z528) in theT-r plane. The solid dots are the two critica
points and the open circles are the data points on the phase bo
ary. The discontinuities in slope result from the joining of the co
puted values by straight lines, except of course, at the triple po
marked byn, where the two two-phase regions join.
.26
TABLE I. Critical-point values.Tc is in units of eV,rc in g/cm3, A is the gram atomic weight,pc in Mbars, andZrc /A in units of
0.602231024/cm3.

Z 1, H 3, Li 7, N 11, Na 19, K 28, Ni 37, Rb 46, Pd 55, Cs 68, Er

Tc 1.83 31.0 124 260 632 1.143103 1.743103 2.463103 2.933103 3.843103

328 513 859 1.053103 1.643103

rc 0.0986 5.27 43.1 143 631 1.583103 3.653103 6.743103 1.063104 1.963104

7.983103 1.443104 3.393104 6.983104 9.403104

A 1.00797 6.94 14.007 22.977 39.0963 56.71 85.4678 106.4 132.91 167

pcVc

ZNkTc
0.491 0.471 0.536 0.639 0.758 0.893 0.998 1.05 1.24 1.39

0.552 0.346 0.832 1.30 0.696
pc 8.9631022 32.1 1.383103 1.103104 1.423105 7.693105 2.653106 7.283106 1.533107 4.113107

6.883105 1.073106 1.013107 3.823107 4.223107

yc 2.22 1.32 1.27 1.24 1.22 1.21 1.21 1.21 1.26 1.30
2.95 2.80 2.68 2.87 2.59

zc 3.93 1.31 1.55 1.63 1.93 2.01 2.17 2.39 2.75 3.34
66.2 53.6 58.1 84.3 57.2

Zrc /A 9.7831022 2.28 21.6 68.6 307 780 1.573103 2.913103 4.363103 7.973103

3.943103 6.233103 1.473104 2.893104 3.823104
2-14
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EQUATION OF STATE FOR A PARTIALLY . . . . II PHYSICAL REVIEW E68, 056112 ~2003!
have connected the data points with straight lines. In
case there are two critical points plainly visible. The po
where the two two-phase regions meet is the triple poin
there are three different phases in equilibrium with ea
other at this special point. It turns out that it is somewh
more interesting to plot the phase boundaries in they-z
plane. I do this in Fig. 15. It is worth noticing that the pha
boundary curve turns up for small values ofz. This effect is
more and more pronounced asZ increases. In Fig. 16 I plo
all the phase boundary results. They appear to convergeZ
increases to the limiting line shown in the figure forz*1.

It appears from Fig. 16 that, except for hydrogen, t
phase boundaries all terminate at some lower limiting va
of z. Whether this behavior is definitive or not has not be
resolved, owing to the rapid increase in computational ti
as lower densities are examined. In Fig. 17 I plot the press
versusy for a constant value ofz which is less than the
apparent lower limit ofz for the phase boundary of lithium
The electron pressure appears of decrease rather smoot
a manner proportional toy210. For medium values ofy, the
rate to decrease slows as the model pressure increases
that of the ideal Fermi gas@22#, This behavior argues that, a
least for smallz, there is no phase transition and the ato
ionizes gradually and goes over smoothly to the fully ioniz
ideal Fermi gas, although as this point has not been t
oughly checked, I cannot be sure. For the smaller valuesy,
the pressure is within a few percent of the ideal Fermi
values. For constantz, y}z1/3/r1/6 andy}z1/6/T1/4. Thus as
y→` for fixed z, T→0 andr→0. Since by Eqs.~2.9! for
small z and small y, pV/NkT'11Z, I expect p}(1
1Z)z8/3y210 as observed. Wheny is large, the system is cold
and dilute. Thus only the center of mass motion would
expected to contribute to the pressure. In this case, the fa

FIG. 15. The phase boundary of the spherical cellular mode
nickel (Z528) in thez-y plane. The solid dots are the two critica
points, the open circles are the data points on the phase boun
and the, is a triple point.
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FIG. 16. The phase boundaries of the spherical cellular mo
for ten different elements. The critical points are solid circles a
the data points are open circles. The triple points are upside d
triangles. Since these triangles are a bit hard to locate, I have pl
small arrows pointing towards them. The points corresponding
each element are joined by dotted lines. The dashed line has
parts: the first for smaller values ofz is just y51 and the second
part is y;0.9636z1/4 which appears to be a limit for the phas
boundaries.

FIG. 17. The pressure for the spherical cellular model of lithiu
(Z53) at a constant de Broglie densityz50.023 045 9. The solid
line is the spherical model result and the dotted line~mostly ob-
scured by the solid line! is the formula shown. The short-dashe
line is a continuation of the expected largey limiting behavior.
2-15
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(11Z) would be replaced by 1. The extension of this a
ymptote is shown in Fig. 17. Excessive computing time h
prevented the exploration of this region. Different behav
is expected and is illustrated for intermediate values ofy.

I now turn to the question of the internal energy. Howev
before doing so, it is appropriate to discuss thermodyna
consistency. The point at issue is the]e j /]TuV term which
appears in Eq.~2.4!. As we know from thermodynamics
given any of the usual thermodynamic quantities, we c
construct the others in a thermodynamically consistent w
However, that is not the approach that is often taken,
rather what seems to be physically reasonable is used
say, the pressure and the internal energy. In the case at h
following that approach one would omit the]e j /]TuV term
from the internal energy, which yields the physically reaso
able energy

E5(
j

e j

exp@~e j2m!/kT#11
. ~5.2!

If one started from the ‘‘physically reasonable’’ intern
energy, instead of using statistical mechanics to derive
Helmholtz free energy as I have done, then one would in
grate Eq.~2.4! with respect toT to obtain the free energy an
then use Eq.~2.5! to derive the pressure. In this case t
Helmholtz free energy would become

A~V,T!5Nm~V,T!

2kT(
j

ln„11exp$@m~V,T!2e j #/~kT!%…

1TE
T

`

(
j

1

t

]e j

]t U
V

dt

exp@~e j2m!/kt#11
. ~5.3!

The corresponding pressure is

pV52(
k

H V
]ek

]V U
T

exp@~ek2m!/kT#11

2TE
T

`

V

t

]

]V S ]e j

]t UVD U
t

dt

exp@~e j2m!/kt#11

1TE
T

`

V

t

]e j

]t UV

]

]V Fe j2m

kt GU
t

exp@~e j2m!/kt#dt

$exp@~e j2m!/kt#11%2
J .

~5.4!

This approach is also worthwhile to investigate, but I sh
not do so here.

The nub of the problem of thermodynamic consistency
the self-consistent potential. While the true physical pot
tials are independent of the temperature, the self-consis
potentials generally are not because they are based on
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electron distribution. For very low temperatures, the el
trons cluster around the ion, while for very high temperatu
they are relatively uniformly distributed. This variatio
causes self-consistent potentials to be temperature de
dent. A couple of examples are the Hartree or ‘‘se
consistent field’’ approximation@13#, and the confined atom
method@19,20#.

It may happen, as is the case with the Thomas-Fe
model @23#, that the contribution of]e j /]T always cancels
out and so need not be considered. The behavior of
T]v/]T in the spherical, cellular model is apparently un
formly positive in the one-phase region and so cannot can
but does become relatively small for both large and smalz.
This feature can be understood physically by noticing tha
the temperature increases the electrons tend towards a
form distribution, rather than remaining clustered about
ion. This feature causes electrons to move away from the
thus increasingv.

The functionr b]v/]r b shows more interesting behavio
as illustrated in Fig. 18. For low densities~that curve extends
to larger values ofr ) the electrons move away from th
central ion to take advantage of the extra available ro
leading to an increase inv. On the other hand, for high
densities, the electrons relax from the relatively uniform d
tribution forced on them by the Pauli principle to be som
what more clustered around the central ion. This behav
results in a smallerv, as shown in Fig. 18. For intermediat
densities, a combination of these two behaviors is illustra
in that figure.

A typical illustration of the energy for the temperatu
greater than the critical temperature is shown for lithium
Fig. 19. In this figure I display both the thermodynamica
consistent internal energy, and what would be expected to
the physically reasonable energy. In this case these two
ergies differ. For both large and small values ofz, the dif-
ference tends to zero. For intermediate values ofz the dif-

FIG. 18. Threer b]v(r b ,T,r /r b)/]r b vs r b curves for different
densities for the spherical cellular model of palladium (Z546) at a
temperature of 2600 eV.a0 is the Bohr radius. The abscissa is
units of a0/2 and the ordinate is in units of 4 Ry.
2-16
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ference can be quite significant.
In Fig. 20 I illustrate the behavior of the energies along

isotherm which passes through the two-phase region. In
case, the energy and the internal energy have rather diffe
values in the lower-density phase, although, as was the
for a temperature above the critical temperature, they b
are substantially equal in the higher-density phase. I exp
that in the low-density limit both the energy and intern
energy will tend to the low-density, total-ionization limit.

The internal energy relates to the total-ionization ene
in the following way. First, as the temperature is not ze
there will be some ionization, so this effect tends to incre
the internal energy above the total-ionization energy. Seco

FIG. 19. The ‘‘physically reasonable’’ energy~labeled energy!
and the internal energy vs the de Broglie density for the spher
cellular model of lithium (Z53) at a temperature of 100 eV. Th
short-dashed line is the low-density, total-ionization limit.
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the boundary conditions, Eq.~3.9!, permit a lower energy
than that of a free atom. These two features make the c
parison of the spherical cellular model internal energies w
the experimental values of the total-ionization energy
given by Moore @24# difficult, and will not be attempted
here.
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al
FIG. 20. The physically reasonable energy~labeled energy! and

the internal energy vs the de Broglie density for the spherical
lular model of potassium (Z519) at a temperature of 230 eV. Th
open circles represent the phase boundaries for this tempera
The solid circle represents the critical-point value ofz. The short-
dashed line is the low-density, total-ionization limit.
APPENDIX A: COMPUTATION OF THE DERIVATIVES

First I define the quantities

Vn~ l ,l!5
e2

r b
Z21/3^f l ,n~r b ,rW !uv~r b ,T,r!r21uf l ,l~r b ,rW !&, Hn~ l ,l!5

e2

r b
^f l ,n~r b ,rW !ur2uf l ,l~r b ,rW !&,

Wn~ l ,l!5
e2

r b
Z21/3^f l ,nu

r bv8~r b ,T,r!

r
uf l ,l&, Un~ l ,l!5

e2

r b
Z21/3^f l ,nu

Tv̇~r b ,T,r!

r
uf l ,l&,

Vion,n~ l ,l!5
e2

r b
Z2/3^f l ,n~r b ,rW !ur21uf l ,l~r b ,rW !&, ~A1!

and the further quantities

A~ l ,l!5 (
nÞl

@Vn~ l ,l!#2

El ,n2El ,l
, B~ l ,l!5 (

nÞl

@Hn~ l ,l!#2

El ,n2El ,l
, C~ l ,l!5 (

nÞl

Vn~ l ,l!Hn~ l ,l!

El ,n2El ,l
,

F~ l ,l!5 (
nÞl

Vn~ l ,l!Wn~ l ,l!

El ,n2El ,l
, G~ l ,l!5 (

nÞl

Hn~ l ,l!Wn~ l ,l!

El ,n2El ,l
, ~A2!
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Q~ l ,l!5 (
nÞl

Vn~ l ,l!Un~ l ,l!

El ,n2El ,l
, G~ l ,l!5 (

nÞl

Hn~ l ,l!Un~ l ,l!

El ,n2El ,l
,

Aion~ l ,l!5 (
nÞl

Vion,n~ l ,l!Vn~ l ,l!

El ,n2El ,l
, Cion~ l ,l!5 (

nÞl

Vion,n~ l ,l!Hn~ l ,l!

El ,n2El ,l
,

Fion~ l ,l!5 (
nÞl

Vion,n~ l ,l!Wn~ l ,l!

El ,n2El ,l
, Q ion~ l ,l!5 (

nÞl

Vion,n~ l ,l!Un~ l ,l!

El ,n2El ,l
.

To compute the last terms in Eqs.~3.23! and ~3.24!, I need the derivative of the wave function

Z21/3r b

]f l ,l~r b ,rW !

]r b
5 (

nÞl

f l ,n~r b ,rW !

El ,n2El ,l
H S 11

] ln m*

] ln r b
DVn~ l ,l!1Wn~ l ,l!

1
1

2
Z21/3F S 11

] ln m*

] ln r b
DFS y2

Z D2
y2

Z
F8S y2

Z D GHn~ l ,l!J . ~A3!

Using Eq.~A3! I obtain, for the needed casekW50W whereV andH are real, the result

Z21/3r b

]

]r b
^f l ,l~rW !uF2

1

2 S 12
m*

m D e2v~r b ,T,r /r b!

r
1

m* e2r 2

4mrb
3 FS y2

Z D G uf l ,l~rW !&5S 11
] ln m*

] ln r b
D S m*

m
21DA~ l ,l!

1
1

2
Z22/3F S 11

] ln m*

] ln r b
DFS y2

Z D2
y2

Z
F8S y2

Z D Gm*

m
FS y2

Z DB~ l ,l!1Z21/3H S 11
] ln m*

] ln r b
Dm*

m
FS y2

Z D1
1

2 S m*

m
21D

3F S 11
] ln m*

] ln r b
DFS y2

Z D2
y2

Z
F8S y2

Z D G J C~ l ,l!2S 12
m*

m DF~ l ,l!1
m*

2m
Z21/3FS y2

Z DG~ l ,l!1
1

2 S 12
m*
m DVl~ l ,l!

1
1

2m

]m*

] ln r b
FVl~ l ,l!1

1

2
Z21/3FS y2

Z DHl~ l ,l!G2
m*

4m
Z21/3FFS y2

Z D1
y2

Z
F8S y2

Z D GHl~ l ,l!2
1

2 S 12
m*

m DWl~ l ,l!,

~A4!

for parallel spins. For antiparallel spins I get

Z21/3r b

]

]r b
^f l ,l~rW !u

e2r 2

4r b
3 FS y2

Z D uf l ,l~rW !&5
1

2
Z22/3FFS y2

Z D2
y2

Z
F8S y2

Z D GFS y2

Z DB~ l ,l!1Z21/3FS y2

Z D C~ l ,l!

1Z21/3
1

2
FS y2

Z DG~ l ,l!2
1

4
Z21/3FFS y2

Z D1
y2

Z
F8S y2

Z D GHl~ l ,l!. ~A5!

In addition I need

e2

Z1/3r b

^f l ,l~rW !u
Z

r /r b
2

v~r b ,T,r /r b!

r /r b
uf l ,l~rW !&5Vion,l~ l ,l!2Vl~ l ,l!,

e2

Z1/3r b

r b

]

]r b
^f l ,l~rW !u

Z

r /r b
2

v~r b ,T,r /r b!

r /r b
uf l ,l~rW !&

52Wl~ l ,l!12H S 11
] ln m*

] ln r b
D @Aion~ l ,l!2A~ l ,l!#1Fion~ l ,l!2F~ l ,l!

1
1

2
Z21/3F S 11

] ln m*

] ln r b
DFS y2

Z D2
y2

Z
F8S y2

Z D G@Cion~ l ,l!2C~ l ,l!#J , ~A6!

for parallel spins. For antiparallel spins I get
056112-18
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e2

Z1/3r b

r b

]

]r b
^f l ,l~rW !u

Z

r /r b
2

v~r b ,T,r /r b!

r /r b
uf l ,l~rW !&

5Wl~ l ,l!12HAion~ l ,l!2A~ l ,l!1Fion~ l ,l!2F~ l ,l!1
1

2
Z21/3FFS y2

Z D2
y2

Z
F8S y2

Z D G@Cion~ l ,l!2C~ l ,l!#J .

~A7!

The next ingredient that I need is

T
]f l ,l~r b ,rW !

]T
5 (

nÞl

f l ,n~r b ,rW !

El ,n2El ,l
H ] ln m*

] ln T FVn~ l ,l!1
1

2
Z21/3FS y2

Z DHn~ l ,l!G1Un~ l ,l!2
1

2
Z21/3

y2

Z
F8S y2

Z DHn~ l ,l!J
~A8!

in order that I may compute

Z21/3T
]

]T
^f l ,l~rW !u H 2

1

2 S 12
m*

m D e2v~r b ,T,r /r b!

r
1

m*

4m

e2r 2

r b
3 FS y2

Z D J uf l ,l~rW !&

5
] ln m*

] ln T S m*

m
21DA~ l ,l!1

1

2
Z2 2/3F] ln m*

] ln T
FS y2

Z D2
y2

Z
F8S y2

Z D GFS y2

Z DB~ l ,l!1Z21/3F S m*

m
11D ] ln m*

] ln T
FS y2

Z D
2S m*

m
21D y2

Z
F8S y2

Z D GC~ l ,l!2S 12
m*

m DQ~ l ,l!1
m*

2m
Z21/3FS y2

Z DG~ l ,l!2
1

2 S 12
m*

m DUl~ l ,l!

1
1

2m

]m*

] ln T FVl~ l ,l!1
1

2
Z21/3FS y2

Z DHl~ l ,l!G2
m*

4m
Z21/3

y2

Z
F8S y2

Z DHl~ l ,l!. ~A9!

For the antiparallel case, I get

Z21/3T
]

]T
^f l ,l~rW !u

e2r 2

4r b
3 FS y2

Z D uf l ,l~rW !&

52
1

2
Z22/3

y2

Z
F8S y2

Z DFS y2

Z DB~ l ,l!1
1

2
Z21/3FS y2

Z DG~ l ,l!2
1

4
Z21/3

y2

Z
F8S y2

Z DHl~ l ,l!. ~A10!

In addition I need the results

2
e2

2Z1/3r b

T
]

]T
^f l ,l~rW !u

Z

r /r b
2

v~r b ,T,r /r b!

r /r b
uf l ,l~rW !&

5
e2

2r b
Ul~ l ,l!2

e2

r b
H ] ln m*

] ln T FAion~ l ,l!2A~ l ,l!1
1

2
Z21/3FS y2

Z D @Cion~ l ,l!2C~ l ,l!#G
1Q ion~ l ,l!2Q~ l ,l!2

1

2
Z21/3

y2

Z
F8S y2

Z D @Cion~ l ,l!2C~ l ,l!#J , ~A11!

for parallel spins and for antiparallel,

2
e2

2Z1/3r b

T
]

]T
^f l ,l~rW !u

Z

r /r b
2

v~r b ,T,r /r b!

r /r b
uf l ,l~rW !&

5
e2

2r b
Ul~ l ,l!2

e2

r b
H Q ion~ l ,l!2Q~ l ,l!2

1

2
Z21/3

y2

Z
F8S y2

Z D @Cion~ l ,l!2C~ l ,l!#J . ~A12!

A discussion of the actual computation ofv8 and v̇ will be deferred to the end of this appendix. The quantitiesW, U, F,
Fion , G, Q, Q ion , andG, which were defined above depend on these derivatives. They may be computed from a kno
of these derivatives and the functions
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Vproto~r !5(
l ,l

S 3

2
2

m* ~l!

2m D E dkW (
nÞl

~2l 11!f l ,n* ~r !f l ,l~r !r 2Vn~ l ,l!

~El ,n2El ,l!„exp$@e l ,l~kW !2m#/kT%11…
,

Hproto~r !5(
l ,l

m* ~l!

m E dkW (
nÞl

~2l 11!f l ,n* ~r !f l ,l~r !r 2Hn~ l ,l!

~El ,n2El ,l!„exp$@e l ,l~kW !2m#/kT%11…
, ~A13!

I proto~r !5(
l ,l

1

2 S 11
m* ~l!

m D E dkW (
nÞl

~2l 11!f l ,n* ~r !f l ,l~r !r 2Vion,n~ l ,l!

~El ,n2El ,l!„exp$@e l ,l~kW !2m#/k%11…
.

Thus I may compute

(
l ,l

E dkW
@32m* ~l!/m#~2l 11!Wl~ l ,l!

4„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drS 3

4
D~r b ,T,r /r b!2

1

4
D* ~r b ,T,r /r b! D r bv8~r b ,T,r /r b!/r ,

(
l ,l

E dkW
@32m* ~l!/m#~2l 11!Ul~ l ,l!

4„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drS 3

4
D~r b ,T,r /r b!2

1

4
D* ~r b ,T,r /r b! DTv̇~r b ,T,r /r b!/r ,

(
l ,l

E dkW
@32m* ~l!/m#~2l 11!F~ l ,l!

2„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drVproto~r !r bv8~r b ,T,r /r b!/r ,

(
l ,l

E dkW
@11m* ~l!/m#~2l 11!Fion~ l ,l!

2„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drI proto~r !r bv8~r b ,T,r /r b!/r ,

(
l ,l

E dkW
m* ~l!~2l 11!G~ l ,l!

m„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drHproto~r !r bv8~r b ,T,r /r b!/r ,

(
l ,l

E dkW
@32m* ~l!/m#~2l 11!Q~ l ,l!

2„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drVproto~r !Tv̇~r b ,T,r /r b!/r ,

(
l ,l

E dkW
@11m* ~l!/m#~2l 11!Q ion~ l ,l!

2„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drI proto~r !Tv̇~r b ,T,r /r b!/r ,

(
l ,l

E dkW
m* ~l!~2l 11!G~ l ,l!

m„exp$@e l ,l~kW !2m#/kT%11…
5e2Z21/3E

0

r b
drHproto~r !Tv̇~r b ,T,r /r b!/r . ~A14!

It is useful to collect the terms which contribute to the pressure and to the internal energy which involver b]v/]r r and
T]v/]T. The corrections to the pressure and the internal energy on this account are

Dp5
202.3023

x0
3 (

l ,l
E dkW

P~ l ,l!

exp$@e l ,l~kW !2m#/kT%11
5

202.3023

x0
3

e2Z21/3H E
0

r b
drS 3

4
D~r b ,T,r /r b!2

1

4
D* ~r b ,T,r /r b! D

3r bv8~r b ,T,r /r b!/r 1E
0

r b
dr@Vproto~r !1I proto~r !#r bv8~r b ,T,r /r b!/r

2
Z21/3

2
FS y2

Z D E
0

r b
drHproto~r !r bv8~r b ,T,r /r b!/r J ,

Du5(
l ,l

E dkW
U~ l ,l!

exp$@e l ,l~kW !2m#/kT%11
5e2Z21/3H E

0

r b
dr S 3

4
D~r b ,T,r /r b!2

1

4
D* ~r b ,T,r /r b! DTv̇~r b ,T,r /r b!/r

1E
0

r b
dr@Vproto~r !1I proto~r !#Tv̇~r b ,T,r /r b!/r 2

Z21/3

2
FS y2

Z D E
0

r b
drHproto~r !Tv̇~r b ,T,r /r b!/r J , ~A15!
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P~ l ,l!5S 3

4
2

m* ~l!

4m DWl~ l ,l!1
1

2 S 11
m* ~l!

m DFion~ l ,l!

1S 1

2
2

3m* ~l!

2m DF~ l ,l!

2
m* ~l!

2m
Z21/3FS y2

Z DG~ l ,l!,

U~ l ,l!5S 3

4
2

m* ~l!

4m DUl~ l ,l!1
1

2 S 11
m* ~l!

m DQ ion~ l ,l!

1S 1

2
2

3m* ~l!

2m DQ~ l ,l!

2
m* ~l!

2m
Z21/3FS y2

Z DG~ l ,l!. ~A16!

The derivatives ofv(r b ,T,r /r b) are

r bv8~r b ,T,r /r b!5S Z21

Z D r bE
(r /r b)

1 S 12
r

br b
D @D~r b ,T,b!

1r bD8~r b ,T,b!#db,

Tv̇~r b ,T,r /r b!5S Z21

Z D r bE
(r /r b)

1 S 12
r

br b
D

3TḊ~r b ,T,b!db. ~A17!
oy
th
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In order to compute the derivatives ofD I will need

r bm8~r b ,T!5(
l ,l

r b

]e l ,l

]r b
exp@~e l ,l2m!/kT#

$exp@~e l ,l2m!/kT#11%2

3F(
l ,l

exp@~e l ,l2m!/kT#

$exp@~e l ,l2m!/kT#11%2G21

,

~A18!

Tṁ~r b ,T!5(
l ,l

H T
]e l ,l

]T
2e l ,l1mJ exp@~e l ,l2m!/kT#

$exp@~e l ,l2m!/kT#11%2

3F(
l ,l

exp@~e l ,l2m!/kT#

$exp@~e l ,l2m!/kT#11%2G21

.

Equations~A18! together with Eqs.~3.23!–~3.25!, ~3.27!–
~3.29!, and~A3! complete the ingredients that I need to com

puteD8 andḊ:
r bD8~r b ,T,r /r b!52(
l ,l

~2l 11!f l ,l* ~r !Ff l ,l~r !1r b

]f l ,l~r !

]r b
G r 2

exp@~e l ,l2m!/kT#11

2(
l ,l

~2l 11!f l ,l* ~r !f l ,l~r !r 2exp@~e l ,l2m!/kT#
r b

kT F]e l ,l

]r b
2

]m

]r b
G

$exp@~e l ,l2m!/kT#11%2
,

TḊ~r b ,T,r /r b!52(
l ,l

~2l 11!f l ,l* ~r !T
]f l ,l~r !

]T
r 2

exp@~e l ,l2m!/kT#11

2(
l ,l

~2l 11!f l ,l* ~r !f l ,l~r !r 2exp@~e l ,l2m!/kT#FT
]

]T
~e l ,l2m!1m2e l ,lG

kT$exp@~e l ,l2m!/kT#11%2
. ~A19!
ace
in
lex,
Equation~A19! is written with the knowledge thatf l ,l(r ) is
real. I have not yet programmed these equations forv8 and

v̇, but rather I have used a finite difference method empl
ing a variation of 1 part in 1000 in the temperature and
density.
-
e

APPENDIX B: CATALOG OF APPROXIMATIONS

The purpose of this appendix is to summarize in one pl
a list of the various approximations which are involved
my approach. As the problem addressed is rather comp
the list is long.
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Throughout this paper, when there are well defined fu
tions whose exact computation is somewhat lengthy, I h
use Pade´ approximant representations which are typically a
curate to within 0.1%.

My use of a cellular model does not take into account
variation in either size or shape of the cells which would
constructed by the Wigner-Seitz method of using pla
which bisect the lines connecting each ion with its near
neighbor ions.

In addition it is a further approximation to treat the ions
Maxwell-Boltzmann particles.

While it is exact for an ideal Fermi gas of chargele
electrons to use a Bravais lattice cellular model, I have m
the further approximation to use spherical cells which inc
porate the additional approximation that the ion is fixed
the center. However the center of mass motion is adde
the pressure and the energies. The periodic boundary co
tions, which were correct for the ideal Fermi gas, are use
every point on the surface of the spherical cell.

The Heitler-London Hamiltonian of the cellular mod
contains a term2( i\2/m* )kW•¹W . In spherical coordinates
this term, while diagonal in thez component of angular mo
mentum, links every angular momentum componentl with
the l 11 andl 21 components. To reduce the very consid
able computation effort which that feature entails, this te
in the Hamiltonian is replaced by the sum of1 and 2 the
root mean square of its values in the appropriate ‘‘nea
degenerate block.’’

To go beyond the Heitler-London Hamiltonian adjus
ments are made to the potential in order to yield corr
results in the limit asy→0. That is the approach to th
ideal-gas limit. These adjustments are based on the idea
the electron density is uniform throughout the cell. Howev
while this feature is correct for both large and small de B
glie densityz, the resultant electron-ion energy dips by abo
6% whenz is of the order of unity, which effect has not bee
accounted for.

The treatment of the exchange effects is also only
proximate. I use az dependent addition to the potential an
an effective massm* which depends on bothy andz when
the two relevant electrons have parallel spins. The ion-
exchange correction is neglected.
s
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A further issue is how the corrections to the Heitle
London Hamiltonian should vanish in the limit asy→`.
I have used a semiclassical approximation to resolve
issue.

When I go beyond hydrogen, there areZ electrons in a
cell with an ion of charge1Ze. This problem is currently
intractable. As is well known the proper procedure is to
tegrate

E )
j 52

Z

drW j^f~rW1 , . . . ,rWZ!uH2Euf~rW1 , . . . ,rWZ!&50

~B1!

which yields a Heitler-London-type equation for therW1 de-
pendence of the wave function, but depends on a com
cated potential. The same must be done for all the ot
electrons and a difficult self-consistency problem must
solved. Of course, the Hartree wave function is fine for
ion-electron interactions, but not so fine for the electro
electron interactions. Instead I make the independent e
tron model approximation. To this end I have introduced
self-consistent, density and temperature dependent pote
I compute this potential from the wave function through t
use of Poisson’s equation. As a further approximation, rat
than removing the contribution for the wave function of t
particular state being solved for, I simply remove a 1/Z frac-
tion of the electron-electron interaction. These latter two
proximations are the least well controlled and probably
most significant approximations made in this approach.

In addition to the approximations in the theory as d
scribed above, there are also numerical approximations
well. In particular, the number of mesh steps used in
radial coordinate is, of course, finite. There is as well t
differencing scheme which is used in the numerical imp
mentation of the Schro¨dinger equation, i.e., (ui 111ui 21
22ui)/D

2. Together they limit the largest value that the k
netic energy can have. Also, bothdv/dr anddv/dT are com-
puted by a finite difference method instead of implement
the formulas of Appendix A. This method normally work
well, but occasionally there are a different number of ite
tions involved between the quantities being differenc
which can sometimes cause a problem.
-
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